Filling gaps in a metabolic network using expression information - PubMed (original) (raw)
Filling gaps in a metabolic network using expression information
Peter Kharchenko et al. Bioinformatics. 2004.
Abstract
Motivation: The metabolic models of both newly sequenced and well-studied organisms contain reactions for which the enzymes have not been identified yet. We present a computational approach for identifying genes encoding such missing metabolic enzymes in a partially reconstructed metabolic network.
Results: The metabolic expression placement (MEP) method relies on the coexpression properties of the metabolic network and is complementary to the sequence homology and genome context methods that are currently being used to identify missing metabolic genes. The MEP algorithm predicts over 20% of all known Saccharomyces cerevisiae metabolic enzyme-encoding genes within the top 50 out of 5594 candidates for their enzymatic function, and 70% of metabolic genes whose expression level has been significantly perturbed across the conditions of the expression dataset used.
Availability: Freely available (in Supplementary information).
Similar articles
- Comparison of reversible-jump Markov-chain-Monte-Carlo learning approach with other methods for missing enzyme identification.
Geng B, Zhou X, Zhu J, Hung YS, Wong ST. Geng B, et al. J Biomed Inform. 2008 Apr;41(2):272-81. doi: 10.1016/j.jbi.2007.09.002. Epub 2007 Sep 15. J Biomed Inform. 2008. PMID: 17950040 - Detecting functional modules in the yeast protein-protein interaction network.
Chen J, Yuan B. Chen J, et al. Bioinformatics. 2006 Sep 15;22(18):2283-90. doi: 10.1093/bioinformatics/btl370. Epub 2006 Jul 12. Bioinformatics. 2006. PMID: 16837529 - CGI: a new approach for prioritizing genes by combining gene expression and protein-protein interaction data.
Ma X, Lee H, Wang L, Sun F. Ma X, et al. Bioinformatics. 2007 Jan 15;23(2):215-21. doi: 10.1093/bioinformatics/btl569. Epub 2006 Nov 10. Bioinformatics. 2007. PMID: 17098772 - Metabolic flux analysis in eukaryotes.
Niklas J, Schneider K, Heinzle E. Niklas J, et al. Curr Opin Biotechnol. 2010 Feb;21(1):63-9. doi: 10.1016/j.copbio.2010.01.011. Epub 2010 Feb 15. Curr Opin Biotechnol. 2010. PMID: 20163950 Review. - Use of genome-scale microbial models for metabolic engineering.
Patil KR, Akesson M, Nielsen J. Patil KR, et al. Curr Opin Biotechnol. 2004 Feb;15(1):64-9. doi: 10.1016/j.copbio.2003.11.003. Curr Opin Biotechnol. 2004. PMID: 15102469 Review.
Cited by
- GENIES: gene network inference engine based on supervised analysis.
Kotera M, Yamanishi Y, Moriya Y, Kanehisa M, Goto S. Kotera M, et al. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W162-7. doi: 10.1093/nar/gks459. Epub 2012 May 18. Nucleic Acids Res. 2012. PMID: 22610856 Free PMC article. - Simultaneous prediction of enzyme orthologs from chemical transformation patterns for de novo metabolic pathway reconstruction.
Tabei Y, Yamanishi Y, Kotera M. Tabei Y, et al. Bioinformatics. 2016 Jun 15;32(12):i278-i287. doi: 10.1093/bioinformatics/btw260. Bioinformatics. 2016. PMID: 27307627 Free PMC article. - Automation of gene assignments to metabolic pathways using high-throughput expression data.
Popescu L, Yona G. Popescu L, et al. BMC Bioinformatics. 2005 Aug 31;6:217. doi: 10.1186/1471-2105-6-217. BMC Bioinformatics. 2005. PMID: 16135255 Free PMC article. - Reconstruction and validation of RefRec: a global model for the yeast molecular interaction network.
Aho T, Almusa H, Matilainen J, Larjo A, Ruusuvuori P, Aho KL, Wilhelm T, Lähdesmäki H, Beyer A, Harju M, Chowdhury S, Leinonen K, Roos C, Yli-Harja O. Aho T, et al. PLoS One. 2010 May 14;5(5):e10662. doi: 10.1371/journal.pone.0010662. PLoS One. 2010. PMID: 20498836 Free PMC article. - MIRAGE: a functional genomics-based approach for metabolic network model reconstruction and its application to cyanobacteria networks.
Vitkin E, Shlomi T. Vitkin E, et al. Genome Biol. 2012 Nov 29;13(11):R111. doi: 10.1186/gb-2012-13-11-r111. Genome Biol. 2012. PMID: 23194418 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases