Localization of the voltage-sensor toxin receptor on KvAP - PubMed (original) (raw)
. 2004 Aug 10;43(31):10071-9.
doi: 10.1021/bi049463y.
Affiliations
- PMID: 15287735
- DOI: 10.1021/bi049463y
Localization of the voltage-sensor toxin receptor on KvAP
Vanessa Ruta et al. Biochemistry. 2004.
Abstract
A variety of venomous animals produce small protein toxins that impair the function of voltage-dependent cation channels by affecting the motions of the voltage-sensor domains and altering the energetics of the opening of the channel. In this study, we investigate the location of the receptor for tarantula venom voltage-sensor toxins on the voltage-dependent K+ channel from Aeropyrum pernix (KvAP), an archeabacterial channel that is functionally inhibited by members of this toxin family. We show that it is possible to purify the same set of toxins from venom of the tarantula Grammostola spatulata using either the purified KvAP voltage-sensor domain or the full-length KvAP channel. The equivalence of toxin retention profiles for the two channel proteins implies that the tarantula voltage-sensor toxin receptor resides exclusively on the voltage-sensor domain and that the pore is not required for the toxin-channel interaction. We have identified and characterized the functional properties of a subset of the tarantula toxins that bind to the KvAP voltage-sensor domain. Some of these toxins, VSTX1 and GSMTX4, have been previously isolated, while others, VSTX2 and VSTX3, are new members of the tarantula voltage-sensor toxin family. Some but not all toxins that bind to the voltage-sensor domain affect voltage-dependent gating of KvAP channels in lipid membranes.
Similar articles
- Structural basis of binding and inhibition of novel tarantula toxins in mammalian voltage-dependent potassium channels.
Shiau YS, Huang PT, Liou HH, Liaw YC, Shiau YY, Lou KL. Shiau YS, et al. Chem Res Toxicol. 2003 Oct;16(10):1217-25. doi: 10.1021/tx0341097. Chem Res Toxicol. 2003. PMID: 14565763 - A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom.
Lee SY, MacKinnon R. Lee SY, et al. Nature. 2004 Jul 8;430(6996):232-5. doi: 10.1038/nature02632. Nature. 2004. PMID: 15241419 - X-ray structure of a voltage-dependent K+ channel.
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R. Jiang Y, et al. Nature. 2003 May 1;423(6935):33-41. doi: 10.1038/nature01580. Nature. 2003. PMID: 12721618 - The voltage-sensor structure in a voltage-gated channel.
Bezanilla F. Bezanilla F. Trends Biochem Sci. 2005 Apr;30(4):166-8. doi: 10.1016/j.tibs.2005.02.006. Trends Biochem Sci. 2005. PMID: 15817390 Review. - Tarantula toxins interacting with voltage sensors in potassium channels.
Swartz KJ. Swartz KJ. Toxicon. 2007 Feb;49(2):213-30. doi: 10.1016/j.toxicon.2006.09.024. Epub 2006 Sep 29. Toxicon. 2007. PMID: 17097703 Free PMC article. Review.
Cited by
- Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP.
Butterwick JA, MacKinnon R. Butterwick JA, et al. J Mol Biol. 2010 Nov 5;403(4):591-606. doi: 10.1016/j.jmb.2010.09.012. Epub 2010 Sep 21. J Mol Biol. 2010. PMID: 20851706 Free PMC article. - Transient outward potassium current, 'Ito', phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms.
Patel SP, Campbell DL. Patel SP, et al. J Physiol. 2005 Nov 15;569(Pt 1):7-39. doi: 10.1113/jphysiol.2005.086223. Epub 2005 Apr 14. J Physiol. 2005. PMID: 15831535 Free PMC article. Review. - The membrane protein KCNQ1 potassium ion channel: Functional diversity and current structural insights.
Dixit G, Dabney-Smith C, Lorigan GA. Dixit G, et al. Biochim Biophys Acta Biomembr. 2020 May 1;1862(5):183148. doi: 10.1016/j.bbamem.2019.183148. Epub 2019 Dec 9. Biochim Biophys Acta Biomembr. 2020. PMID: 31825788 Free PMC article. Review. - Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus.
Armstrong DA, Jin AH, Braga Emidio N, Lewis RJ, Alewood PF, Rosengren KJ. Armstrong DA, et al. Mar Drugs. 2021 Jan 26;19(2):60. doi: 10.3390/md19020060. Mar Drugs. 2021. PMID: 33530397 Free PMC article. - Down-state model of the voltage-sensing domain of a potassium channel.
Schow EV, Freites JA, Gogna K, White SH, Tobias DJ. Schow EV, et al. Biophys J. 2010 Jun 16;98(12):2857-66. doi: 10.1016/j.bpj.2010.03.031. Biophys J. 2010. PMID: 20550898 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources