Behavioral alterations in response to fear-provoking stimuli and tranylcypromine induced by perinatal exposure to bisphenol A and nonylphenol in male rats - PubMed (original) (raw)

Behavioral alterations in response to fear-provoking stimuli and tranylcypromine induced by perinatal exposure to bisphenol A and nonylphenol in male rats

Takayuki Negishi et al. Environ Health Perspect. 2004 Aug.

Abstract

The purpose of this study was to examine whether perinatal exposure to two major environmental endocrine-disrupting chemicals, bisphenol A (BPA; 0.1 mg/kg/day orally) and nonylphenol [NP; 0.1 mg/kg/day (low dose) and 10 mg/kg/day (high dose) orally] daily from gestational day 3 to postnatal day 20 (transplacental and lactational exposures) would lead to behavioral alterations in the male offspring of F344 rats. Neither BPA nor NP exposure affected behavioral characteristics in an open-field test (8 weeks of age), in a measurement of spontaneous motor activity (12 weeks of age), or in an elevated plus-maze test (14 weeks of age). A passive avoidance test (13 weeks of age) showed that both BPA- and NP-treated offspring tended to delay entry into a dark compartment. An active avoidance test at 15 weeks of age revealed that BPA-treated offspring showed significantly fewer avoidance responses and low-dose NP-treated offspring exhibited slightly fewer avoidance responses. Furthermore, BPA-treated offspring significantly increased the number of failures to avoid electrical unconditioned stimuli within 5-sec electrical shock presentation compared with the control offspring. In a monoamine-disruption test using 5 mg/kg (intraperitoneal) tranylcypromine (Tcy), a monoamine oxidase inhibitor, both BPA-treated and low-dose NP-treated offspring at 22-24 weeks of age failed to show a significant increment in locomotion in response to Tcy, whereas control and high-dose NP-treated offspring significantly increased locomotion behavior after Tcy injection. In addition, when only saline was injected during a monoamine-disruption test, low-dose NP-treated offspring showed frequent rearing compared with the control offspring. The present results indicate that perinatal low-dose BPA or NP exposure irreversibly influenced the reception of fear-provoking stimuli (e.g., electrical shock), as well as monoaminergic neural pathways. Key words: behavior, bisphenol A, fear, learning, monoamine, nonylphenol.

PubMed Disclaimer

Figures

Similar articles

Cited by

References

    1. Adriani W, Seta DD, Dess-Fulgheri F, Farabollini F, Laviola G. Altered profiles of spontaneous novelty seeking, impulsive behavior, and response to d-amphetamine in rats perinatally exposed to bisphenol A. Environ Health Perspect. 2003;111:395–401. - PMC - PubMed
    1. Aloisi AM, Della Seta D, Rendo C, Ceccarelli I, Scaramuzzino A, Farabollini F. Exposure to the estrogenic pollutant bisphenol A affects pain behavior induced by subcutaneous formalin injection in male and female rats. Brain Res. 2002;937:1–7. - PubMed
    1. Dessi-Fulgheri F, Porrini S, Farabollini F. Effects of perinatal exposure to bisphenol A on play behavior of female and male juvenile rats. Environ Health Perspect. 2002;110(suppl 3):403–407. - PMC - PubMed
    1. Farabollini F, Porrini S, Della Seta D, Bianchi F, Dessi-Fulgheri F. Effects of perinatal exposure to bisphenol A on socio-sexual behavior of female and male rats. Environ Health Perspect. 2002;110(suppl 3):409–414. - PMC - PubMed
    1. Farabollini F, Porrini S, Dessi-Fulgherit F. Perinatal exposure to the estrogenic pollutant bisphenol A affects behavior in male and female rats. Pharmacol Biochem Behav. 1999;64:687–694. - PubMed

MeSH terms

Substances

LinkOut - more resources