Augmented inhibition of Candida albicans growth by murine neutrophils in the presence of a tryptophan metabolite, picolinic acid - PubMed (original) (raw)
Augmented inhibition of Candida albicans growth by murine neutrophils in the presence of a tryptophan metabolite, picolinic acid
Shigeru Abe et al. J Infect Chemother. 2004 Jun.
Abstract
The effects of picolinic acid (PLA), a product of tryptophan catabolism, on anti- Candida activity of neutrophils were studied. Casein-induced peritoneal neutrophils of C3H/He mice partially inhibited mycelial growth of Candida albicans when cultured with C. albicans for 16 h in vitro. The growth inhibition of Candida was augmented by a combination of neutrophils and more than 4 mM picolinic acid. Especially in the presence of 200 U/ml murine interferon-gamma (IFN-gamma), 2 mM picolinic acid augmented the anti- Candida activity of neutrophils. The physiological significance of the augmenting effects of picolinic acid is discussed.
Similar articles
- Picolinic acid, a catabolite of tryptophan, as the second signal in the activation of IFN-gamma-primed macrophages.
Varesio L, Clayton M, Blasi E, Ruffman R, Radzioch D. Varesio L, et al. J Immunol. 1990 Dec 15;145(12):4265-71. J Immunol. 1990. PMID: 1701787 - Augmented inhibition of growth of Candida albicans by neutrophils in the presence of lactoferrin.
Okutomi T, Abe S, Tansho S, Wakabayashi H, Kawase K, Yamaguchi H. Okutomi T, et al. FEMS Immunol Med Microbiol. 1997 Jun;18(2):105-12. doi: 10.1111/j.1574-695X.1997.tb01034.x. FEMS Immunol Med Microbiol. 1997. PMID: 9223614 - [Inhibition of Growth of Candida albicans by a Lysozyme-chitosan Conjugate, LYZOX and its Combination with Decanoic Acid].
Kageshima H, Hayama K, Takahashi M, Abe M, Yamada T, Saito A, Hirano S, Murakami Y, Abe S. Kageshima H, et al. Med Mycol J. 2017;58(3):J63-J69. doi: 10.3314/mmj.17-00005. Med Mycol J. 2017. PMID: 28855481 Japanese. - Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans.
Cui J, Ren B, Tong Y, Dai H, Zhang L. Cui J, et al. Virulence. 2015;6(4):362-71. doi: 10.1080/21505594.2015.1039885. Virulence. 2015. PMID: 26048362 Free PMC article. Review.
Cited by
- The Kynurenine Pathway and Kynurenine 3-Monooxygenase Inhibitors.
Hughes TD, Güner OF, Iradukunda EC, Phillips RS, Bowen JP. Hughes TD, et al. Molecules. 2022 Jan 2;27(1):273. doi: 10.3390/molecules27010273. Molecules. 2022. PMID: 35011505 Free PMC article. Review. - Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities.
Pocivavsek A, Schwarcz R, Erhardt S. Pocivavsek A, et al. Pharmacol Rev. 2024 Oct 16;76(6):978-1008. doi: 10.1124/pharmrev.124.000239. Pharmacol Rev. 2024. PMID: 39304346 Free PMC article. Review. - Kynurenines with neuroactive and redox properties: relevance to aging and brain diseases.
Reyes Ocampo J, Lugo Huitrón R, González-Esquivel D, Ugalde-Muñiz P, Jiménez-Anguiano A, Pineda B, Pedraza-Chaverri J, Ríos C, Pérez de la Cruz V. Reyes Ocampo J, et al. Oxid Med Cell Longev. 2014;2014:646909. doi: 10.1155/2014/646909. Epub 2014 Feb 17. Oxid Med Cell Longev. 2014. PMID: 24693337 Free PMC article. Review. - Kynurenine pathway metabolites in humans: disease and healthy States.
Chen Y, Guillemin GJ. Chen Y, et al. Int J Tryptophan Res. 2009;2:1-19. doi: 10.4137/ijtr.s2097. Epub 2009 Jan 8. Int J Tryptophan Res. 2009. PMID: 22084578 Free PMC article. - Metabolomics reveals differential levels of oral metabolites in HIV-infected patients: toward novel diagnostic targets.
Ghannoum MA, Mukherjee PK, Jurevic RJ, Retuerto M, Brown RE, Sikaroodi M, Webster-Cyriaque J, Gillevet PM. Ghannoum MA, et al. OMICS. 2013 Jan;17(1):5-15. doi: 10.1089/omi.2011.0035. Epub 2011 Jul 13. OMICS. 2013. PMID: 21751871 Free PMC article.