15-deoxy-Delta12,14-prostaglandin J2 inhibits IFN-inducible protein 10/CXC chemokine ligand 10 expression in human microglia: mechanisms and implications - PubMed (original) (raw)

15-deoxy-Delta12,14-prostaglandin J2 inhibits IFN-inducible protein 10/CXC chemokine ligand 10 expression in human microglia: mechanisms and implications

Qiusheng Si et al. J Immunol. 2004.

Abstract

Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources