Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli - PubMed (original) (raw)
Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli
Lars Hestbjerg Hansen et al. Antimicrob Agents Chemother. 2004 Sep.
Abstract
We report here the first gene-encoded resistance mechanism to the swine growth enhancer olaquindox. The genetic elements involved in resistance to olaquindox were subcloned and sequenced from a conjugative plasmid isolated from Escherichia coli. The subcloned fragment contained two open reading frames, oqxA and oqxB, that are homologous to several resistance-nodulation-cell-division family efflux systems from different species. The putative protein sequences were aligned to both experimentally verified and putative efflux pumps. We show that oqxA and oqxB are expressed in E. coli. Plasmids containing the oqxAB genes yielded high (>128 microg/ml) resistance to olaquindox in E. coli, whereas strains containing the control plasmid showed low resistance to the drug (8 microg/ml). The oqxAB-encoded pump also conferred high (>64 microg/ml) resistance to chloramphenicol. We demonstrate that the subcloned fragment conferred H(+)-dependent ethidium efflux abilities to E. coli strain N43. In addition, we show that the efflux system is dependent on the host TolC outer membrane protein when expressed in E. coli.
Figures
FIG. 1.
The 6-kb ApaLI insert from pOLA52 revealed three ORFs, and their locations are indicated in the diagram. The oqxA and oqxB genes are situated on the plus strand, ORF3 is located on the minus strand. Some selected restriction sites are indicated.
FIG. 2.
(A) Comparison of the putative protein sequence of OqxA and the entire sequences of the E. coli AcrA, X. axonopodis MexE, and P. aeruginosa MexX proteins. (B) Comparison of the putative protein sequence of OqxB and the entire sequences of the E. coli AcrB, X. axonopodis MexF, and P. aeruginosa MexY proteins. Black letters on a white background indicate different amino acid residues. Shaded black letters indicate similar residues. White letters on a black background indicate identical residues.
FIG. 2.
(A) Comparison of the putative protein sequence of OqxA and the entire sequences of the E. coli AcrA, X. axonopodis MexE, and P. aeruginosa MexX proteins. (B) Comparison of the putative protein sequence of OqxB and the entire sequences of the E. coli AcrB, X. axonopodis MexF, and P. aeruginosa MexY proteins. Black letters on a white background indicate different amino acid residues. Shaded black letters indicate similar residues. White letters on a black background indicate identical residues.
FIG. 2.
(A) Comparison of the putative protein sequence of OqxA and the entire sequences of the E. coli AcrA, X. axonopodis MexE, and P. aeruginosa MexX proteins. (B) Comparison of the putative protein sequence of OqxB and the entire sequences of the E. coli AcrB, X. axonopodis MexF, and P. aeruginosa MexY proteins. Black letters on a white background indicate different amino acid residues. Shaded black letters indicate similar residues. White letters on a black background indicate identical residues.
FIG. 3.
RT-PCR analysis of oqxAB operon and agarose gel electrophoresis of RT-PCR products. Products were visualized in a 1.2% agarose gel. Lanes 1 and 6, 100-bp marker; lanes 2 and 3, RT-PCRs with N43 (lane 2) or N43/pOLA52 (lane 3) as a template; lanes 4 and 5, control PCRs on templates of total RNA from N43 (lane 4) or N43/pOLA52 (lane 5).
FIG. 4.
(Left panel) Uptake of ethidium in E. coli N43 cells containing either pLOW2 (○) or pLOW2::oqxAB (▵). Cells were exposed to ethidium bromide at 0 min. CCCP was added to the cells after 9 min (point indicated by arrow). The fluorescence of cells (shown as relative fluorescence units [RFU]), caused by the presence of ethidium, was measured continuously during the assay. (Right panel) Ethidium efflux. Starved cells of N43 cells containing either pLOW2 (○) or pLOW2::oqxAB (▵) were loaded with ethidium bromide for 1 h prior to the start of the assay. At 5 min after assay start, glucose and thiamine were added to energize the cells (indicated by arrow). The fluorescence of cells (shown as relative fluorescence units [RFU]), caused by the presence of ethidium, was measured continuously during the assay.
Similar articles
- The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs.
Hansen LH, Sørensen SJ, Jørgensen HS, Jensen LB. Hansen LH, et al. Microb Drug Resist. 2005 Winter;11(4):378-82. doi: 10.1089/mdr.2005.11.378. Microb Drug Resist. 2005. PMID: 16359198 - Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria.
Hansen LH, Jensen LB, Sørensen HI, Sørensen SJ. Hansen LH, et al. J Antimicrob Chemother. 2007 Jul;60(1):145-7. doi: 10.1093/jac/dkm167. Epub 2007 May 24. J Antimicrob Chemother. 2007. PMID: 17526501 - Efflux pump genes of the resistance-nodulation-division family in Burkholderia cenocepacia genome.
Guglierame P, Pasca MR, De Rossi E, Buroni S, Arrigo P, Manina G, Riccardi G. Guglierame P, et al. BMC Microbiol. 2006 Jul 20;6:66. doi: 10.1186/1471-2180-6-66. BMC Microbiol. 2006. PMID: 16857052 Free PMC article. - [The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria].
Hasdemir U. Hasdemir U. Mikrobiyol Bul. 2007 Apr;41(2):309-27. Mikrobiyol Bul. 2007. PMID: 17682720 Review. Turkish. - The multiple antibiotic resistance (mar) locus and its significance.
Randall LP, Woodward MJ. Randall LP, et al. Res Vet Sci. 2002 Apr;72(2):87-93. doi: 10.1053/rvsc.2001.0537. Res Vet Sci. 2002. PMID: 12027588 Review.
Cited by
- Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment.
Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, Huang X, Wu C, Sun Y, Sun Y, Zeng Z, Liu JH. Zhao J, et al. Antimicrob Agents Chemother. 2010 Oct;54(10):4219-24. doi: 10.1128/AAC.00139-10. Epub 2010 Aug 9. Antimicrob Agents Chemother. 2010. PMID: 20696876 Free PMC article. - Complete Genome Sequence of Stenotrophomonas maltophilia Strain CF13, Recovered from Sputum from an Australian Cystic Fibrosis Patient.
Hamidian M, Lazenby J, To J, Hartstein R, Soares J, McNamara S, Whitchurch CB. Hamidian M, et al. Microbiol Resour Announc. 2020 Aug 6;9(32):e00628-20. doi: 10.1128/MRA.00628-20. Microbiol Resour Announc. 2020. PMID: 32763931 Free PMC article. - Plasmid-Mediated Quinolone Resistance; Interactions between Human, Animal, and Environmental Ecologies.
Poirel L, Cattoir V, Nordmann P. Poirel L, et al. Front Microbiol. 2012 Feb 2;3:24. doi: 10.3389/fmicb.2012.00024. eCollection 2012. Front Microbiol. 2012. PMID: 22347217 Free PMC article. - A large self-transmissible resistance plasmid from Nigeria contains genes that ameliorate a carrying cost.
Monárrez R, Braun M, Coburn-Flynn O, Botelho J, Odetoyin BW, Otero-Vera JI, Quartey NKE, Peixe L, Aboderin AO, Okeke IN. Monárrez R, et al. Sci Rep. 2019 Dec 23;9(1):19624. doi: 10.1038/s41598-019-56064-z. Sci Rep. 2019. PMID: 31873110 Free PMC article. - Molecular Epidemiology of Plasmid-Mediated Types 1 and 3 Fimbriae Associated with Biofilm Formation in Multidrug Resistant Escherichia coli from Diseased Food Animals in Guangdong, China.
Guo WY, Zhang H, Cheng M, Huang MR, Li Q, Jiang YW, Zhang JX, Sun RY, Wang MG, Liao XP, Liu YH, Sun J, Fang LX. Guo WY, et al. Microbiol Spectr. 2022 Oct 26;10(5):e0250321. doi: 10.1128/spectrum.02503-21. Epub 2022 Aug 15. Microbiol Spectr. 2022. PMID: 35969065 Free PMC article.
References
- DANMAP. 1999. Resistance monitoring in Denmark, 1997-DANMAP. Wkly Epidemiol. Rec. 74:125-127. - PubMed
- da Silva, A. C., J. A. Ferro, F. C. Reinach, C. S. Farah, L. R. Furlan, R. B. Quaggio, C. B. Monteiro-Vitorello, M. A. Van Sluys, N. F. Almeida, L. M. Alves, A. M. do Amaral, M. C. Bertolini, L. E. Camargo, G. Camarotte, F. Cannavan, J. Cardozo, F. Chambergo, L. P. Ciapina, R. M. Cicarelli, L. L. Coutinho, J. R. Cursino-Santos, H. El-Dorry, J. B. Faria, A. J. Ferreira, R. C. Ferreira, M. I. Ferro, E. F. Formighieri, M. C. Franco, C. C. Greggio, A. Gruber, A. M. Katsuyama, L. T. Kishi, R. P. Leite, E. G. Lemos, M. V. Lemos, E. C. Locali, M. A. Machado, A. M. Madeira, N. M. Martinez-Rossi, E. C. Martins, J. Meidanis, C. F. Menck, C. Y. Miyaki, D. H. Moon, L. M. Moreira, M. T. Novo, V. K. Okura, M. C. Oliveira, V. R. Oliveira, H. A. Pereira, A. Rossi, J. A. Sena, C. Silva, R. F. de Souza, L. A. Spinola, M. A. Takita, R. E. Tamura, E. C. Teixeira, R. I. Tezza, M. Trindade dos Santos, D. Truffi, S. M. Tsai, F. F. White, J. C. Setubal, and J. P. Kitajima. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases