1alpha,25-dihydroxycholecalciferol increases the expression of vascular endothelial growth factor in C3H10T1/2 mouse embryo fibroblasts - PubMed (original) (raw)
. 2004 Sep;134(9):2244-50.
doi: 10.1093/jn/134.9.2244.
Affiliations
- PMID: 15333711
- DOI: 10.1093/jn/134.9.2244
Free article
1alpha,25-dihydroxycholecalciferol increases the expression of vascular endothelial growth factor in C3H10T1/2 mouse embryo fibroblasts
Marci J Levine et al. J Nutr. 2004 Sep.
Free article
Abstract
Evidence suggests that biologically active vitamin D, 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)], may inhibit carcinogenesis. Because angiogenesis is crucial to carcinogenesis, 1,25(OH)(2)D(3) regulation of proangiogenic vascular endothelial growth factor (VEGF) secretion was investigated in cellular models for multistage carcinogenesis. Conditioned media from 1,25(OH)(2)D(3)-treated C3H10T(1/2) mouse fibroblasts and their Harvey ras-oncogene transfected counterparts (rasneo11a cells) induced human umbilical vein endothelial cell (HUVEC) proliferation (1.3 and 0.3 times, respectively, P < 0.05), suggesting that 1,25(OH)(2)D(3) altered the angiogenic phenotype of the cells. Although rasneo11a cells secreted less VEGF than C3H10T(1/2) cells (97%, P < 0.005), 1,25(OH)(2)D(3) induced C3H10T(1/2) and rasneo11a cells to secrete 2 and 3 times, respectively, more VEGF than controls (P < 0.05). Similar effects on VEGF release occurred after 1,25(OH)(2)D(3) treatment of MCF10A and MCF10Aras cells, a human breast epithelial cell model for multistage carcinogenesis. In C3H10T(1/2) cells, 1,25(OH)(2)D(3) activated the VEGF promoter in a dose-dependent (5-100 nmol/L) manner (maximum 60%) and all doses induced VEGF secretion (P < 0.05). 1,25(OH)(2)D(3) induced VEGF mRNA expression ( approximately 50%) from 2 through 24 h; VEGF release was significantly increased at 8 h and sustained for 24 h. VEGF mRNA expression and release declined as C3H10T(1/2) cells grew more confluent, whereas the magnitude of 1,25(OH)(2)D(3)-stimulated changes in VEGF was greater in confluent (3.3 times RNA; 3.5 times release) than in subconfluent (50% RNA; 100% release) cultures (P < 0.05). Thus, 1,25(OH)(2)D(3) increases VEGF secretion, and in C3H10T(1/2) cells, this is likely through activation of the VEGF promoter and induction of gene expression. These data contribute to understanding the role 1,25(OH)(2)D(3) plays in regulation of angiogenesis in normal compared with disease states.
Similar articles
- Upregulation of transforming growth factor-beta1 and vascular endothelial growth factor in cultured keloid fibroblasts: relevance to angiogenic activity.
Fujiwara M, Muragaki Y, Ooshima A. Fujiwara M, et al. Arch Dermatol Res. 2005 Oct;297(4):161-9. doi: 10.1007/s00403-005-0596-2. Epub 2005 Oct 26. Arch Dermatol Res. 2005. PMID: 16184401 - Regulation of vascular endothelial growth factor expression by insulin-like growth factor I.
Punglia RS, Lu M, Hsu J, Kuroki M, Tolentino MJ, Keough K, Levy AP, Levy NS, Goldberg MA, D'Amato RJ, Adamis AP. Punglia RS, et al. Diabetes. 1997 Oct;46(10):1619-26. doi: 10.2337/diacare.46.10.1619. Diabetes. 1997. PMID: 9313759 - Calcitriol reduces thrombospondin-1 and increases vascular endothelial growth factor in breast cancer cells: implications for tumor angiogenesis.
García-Quiroz J, Rivas-Suárez M, García-Becerra R, Barrera D, Martínez-Reza I, Ordaz-Rosado D, Santos-Martinez N, Villanueva O, Santos-Cuevas CL, Avila E, Gamboa-Domínguez A, Halhali A, Larrea F, Díaz L. García-Quiroz J, et al. J Steroid Biochem Mol Biol. 2014 Oct;144 Pt A:215-22. doi: 10.1016/j.jsbmb.2013.09.019. Epub 2013 Oct 9. J Steroid Biochem Mol Biol. 2014. PMID: 24120914 - 1,25-dihydroxyvitamin D3 regulates VEGF production through a vitamin D response element in the VEGF promoter.
Cardus A, Panizo S, Encinas M, Dolcet X, Gallego C, Aldea M, Fernandez E, Valdivielso JM. Cardus A, et al. Atherosclerosis. 2009 May;204(1):85-9. doi: 10.1016/j.atherosclerosis.2008.08.020. Epub 2008 Aug 29. Atherosclerosis. 2009. PMID: 18834982
Cited by
- Secretion of L-glutamate from osteoclasts through transcytosis.
Morimoto R, Uehara S, Yatsushiro S, Juge N, Hua Z, Senoh S, Echigo N, Hayashi M, Mizoguchi T, Ninomiya T, Udagawa N, Omote H, Yamamoto A, Edwards RH, Moriyama Y. Morimoto R, et al. EMBO J. 2006 Sep 20;25(18):4175-86. doi: 10.1038/sj.emboj.7601317. Epub 2006 Sep 7. EMBO J. 2006. PMID: 16957773 Free PMC article. - Micronutrient deficiencies in pregnancy worldwide: health effects and prevention.
Gernand AD, Schulze KJ, Stewart CP, West KP Jr, Christian P. Gernand AD, et al. Nat Rev Endocrinol. 2016 May;12(5):274-89. doi: 10.1038/nrendo.2016.37. Epub 2016 Apr 1. Nat Rev Endocrinol. 2016. PMID: 27032981 Free PMC article. Review. - Vitamin D and cancer: a review of molecular mechanisms.
Fleet JC, DeSmet M, Johnson R, Li Y. Fleet JC, et al. Biochem J. 2012 Jan 1;441(1):61-76. doi: 10.1042/BJ20110744. Biochem J. 2012. PMID: 22168439 Free PMC article. Review. - Vitamin D improves the angiogenic properties of endothelial progenitor cells.
Grundmann M, Haidar M, Placzko S, Niendorf R, Darashchonak N, Hubel CA, von Versen-Höynck F. Grundmann M, et al. Am J Physiol Cell Physiol. 2012 Nov 1;303(9):C954-62. doi: 10.1152/ajpcell.00030.2012. Epub 2012 Aug 29. Am J Physiol Cell Physiol. 2012. PMID: 22932684 Free PMC article. - Vitamin D Deficiency Is Associated With Poor Ovarian Stimulation Outcome in PCOS but Not Unexplained Infertility.
Butts SF, Seifer DB, Koelper N, Senapati S, Sammel MD, Hoofnagle AN, Kelly A, Krawetz SA, Santoro N, Zhang H, Diamond MP, Legro RS; Eunice Kennedy Shriver National Institute of Child Health and Human Development Reproductive Medicine Network. Butts SF, et al. J Clin Endocrinol Metab. 2019 Feb 1;104(2):369-378. doi: 10.1210/jc.2018-00750. J Clin Endocrinol Metab. 2019. PMID: 30085176 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources