Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity - PubMed (original) (raw)
. 2004 Oct;7(10):1104-12.
doi: 10.1038/nn1311. Epub 2004 Sep 7.
Affiliations
- PMID: 15361876
- DOI: 10.1038/nn1311
Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity
Ken-Ichi Okamoto et al. Nat Neurosci. 2004 Oct.
Abstract
The synapse is a highly organized cellular specialization whose structure and composition are reorganized, both positively and negatively, depending on the strength of input signals. The mechanisms orchestrating these changes are not well understood. A plausible locus for the reorganization of synapse components and structure is actin, because it serves as both cytoskeleton and scaffold for synapses and exists in a dynamic equilibrium between F-actin and G-actin that is modulated bidirectionally by cellular signaling. Using a new FRET-based imaging technique to monitor F-actin/G-actin equilibrium, we show here that tetanic stimulation causes a rapid, persistent shift of actin equilibrium toward F-actin in the dendritic spines of rat hippocampal neurons. This enlarges the spines and increases postsynaptic binding capacity. In contrast, prolonged low-frequency stimulation shifts the equilibrium toward G-actin, resulting in a loss of postsynaptic actin and of structure. This bidirectional regulation of actin is actively involved in protein assembly and disassembly and provides a substrate for bidirectional synaptic plasticity.
Similar articles
- The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag?
Okamoto K, Bosch M, Hayashi Y. Okamoto K, et al. Physiology (Bethesda). 2009 Dec;24:357-66. doi: 10.1152/physiol.00029.2009. Physiology (Bethesda). 2009. PMID: 19996366 Review. - Role of actin cytoskeleton in dendritic spine morphogenesis.
Sekino Y, Kojima N, Shirao T. Sekino Y, et al. Neurochem Int. 2007 Jul-Sep;51(2-4):92-104. doi: 10.1016/j.neuint.2007.04.029. Epub 2007 May 13. Neurochem Int. 2007. PMID: 17590478 Review. - Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in dendritic spines.
Ouimet CC, Katona I, Allen P, Freund TF, Greengard P. Ouimet CC, et al. J Comp Neurol. 2004 Nov 22;479(4):374-88. doi: 10.1002/cne.20313. J Comp Neurol. 2004. PMID: 15514983 - Activation of N-methyl-D-aspartate receptor induces a shift of drebrin distribution: disappearance from dendritic spines and appearance in dendritic shafts.
Sekino Y, Tanaka S, Hanamura K, Yamazaki H, Sasagawa Y, Xue Y, Hayashi K, Shirao T. Sekino Y, et al. Mol Cell Neurosci. 2006 Mar;31(3):493-504. doi: 10.1016/j.mcn.2005.11.003. Epub 2005 Dec 20. Mol Cell Neurosci. 2006. PMID: 16368245
Cited by
- Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement.
Knafo S, Venero C, Sánchez-Puelles C, Pereda-Peréz I, Franco A, Sandi C, Suárez LM, Solís JM, Alonso-Nanclares L, Martín ED, Merino-Serrais P, Borcel E, Li S, Chen Y, Gonzalez-Soriano J, Berezin V, Bock E, Defelipe J, Esteban JA. Knafo S, et al. PLoS Biol. 2012 Feb;10(2):e1001262. doi: 10.1371/journal.pbio.1001262. Epub 2012 Feb 21. PLoS Biol. 2012. PMID: 22363206 Free PMC article. - NESH regulates dendritic spine morphology and synapse formation.
Bae J, Sung BH, Cho IH, Kim SM, Song WK. Bae J, et al. PLoS One. 2012;7(4):e34677. doi: 10.1371/journal.pone.0034677. Epub 2012 Apr 2. PLoS One. 2012. PMID: 22485184 Free PMC article. - Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity.
Hedrick NG, Harward SC, Hall CE, Murakoshi H, McNamara JO, Yasuda R. Hedrick NG, et al. Nature. 2016 Oct 6;538(7623):104-108. doi: 10.1038/nature19784. Epub 2016 Sep 28. Nature. 2016. PMID: 27680697 Free PMC article. - Electrical advantages of dendritic spines.
Gulledge AT, Carnevale NT, Stuart GJ. Gulledge AT, et al. PLoS One. 2012;7(4):e36007. doi: 10.1371/journal.pone.0036007. Epub 2012 Apr 20. PLoS One. 2012. PMID: 22532875 Free PMC article. - Evidence that long-term potentiation occurs within individual hippocampal synapses during learning.
Fedulov V, Rex CS, Simmons DA, Palmer L, Gall CM, Lynch G. Fedulov V, et al. J Neurosci. 2007 Jul 25;27(30):8031-9. doi: 10.1523/JNEUROSCI.2003-07.2007. J Neurosci. 2007. PMID: 17652593 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources