Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans - PubMed (original) (raw)
. 2004 Jun 30;11(3):179-97.
doi: 10.1093/dnares/11.3.179.
Zongzhong Tong, Jin Wang, Li Wang, Zhaobiao Guo, Yanpin Han, Jianguo Zhang, Decui Pei, Dongsheng Zhou, Haiou Qin, Xin Pang, Yujun Han, Junhui Zhai, Min Li, Baizhong Cui, Zhizhen Qi, Lixia Jin, Ruixia Dai, Feng Chen, Shengting Li, Chen Ye, Zongmin Du, Wei Lin, Jun Wang, Jun Yu, Huanming Yang, Jian Wang, Peitang Huang, Ruifu Yang
Affiliations
- PMID: 15368893
- DOI: 10.1093/dnares/11.3.179
Free article
Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans
Yajun Song et al. DNA Res. 2004.
Free article
Abstract
Genomics provides an unprecedented opportunity to probe in minute detail into the genomes of the world's most deadly pathogenic bacteria- Yersinia pestis. Here we report the complete genome sequence of Y. pestis strain 91001, a human-avirulent strain isolated from the rodent Brandt's vole-Microtus brandti. The genome of strain 91001 consists of one chromosome and four plasmids (pPCP1, pCD1, pMT1 and pCRY). The 9609-bp pPCP1 plasmid of strain 91001 is almost identical to the counterparts from reference strains (CO92 and KIM). There are 98 genes in the 70,159-bp range of plasmid pCD1. The 106,642-bp plasmid pMT1 has slightly different architecture compared with the reference ones. pCRY is a novel plasmid discovered in this work. It is 21,742 bp long and harbors a cryptic type IV secretory system. The chromosome of 91001 is 4,595,065 bp in length. Among the 4037 predicted genes, 141 are possible pseudo-genes. Due to the rearrangements mediated by insertion elements, the structure of the 91001 chromosome shows dramatic differences compared with CO92 and KIM. Based on the analysis of plasmids and chromosome architectures, pseudogene distribution, nitrate reduction negative mechanism and gene comparison, we conclude that strain 91001 and other strains isolated from M. brandti might have evolved from ancestral Y. pestis in a different lineage. The large genome fragment deletions in the 91001 chromosome and some pseudogenes may contribute to its unique nonpathogenicity to humans and host-specificity.
Similar articles
- Structural organization of virulence-associated plasmids of Yersinia pestis.
Hu P, Elliott J, McCready P, Skowronski E, Garnes J, Kobayashi A, Brubaker RR, Garcia E. Hu P, et al. J Bacteriol. 1998 Oct;180(19):5192-202. doi: 10.1128/JB.180.19.5192-5202.1998. J Bacteriol. 1998. PMID: 9748454 Free PMC article. - Bioluminescent tracking of colonization and clearance dynamics of plasmid-deficient Yersinia pestis strains in a mouse model of septicemic plague.
Zhou J, Bi Y, Xu X, Qiu Y, Wang Q, Feng N, Cui Y, Yan Y, Zhou L, Tan Y, Yang H, Du Z, Han Y, Song Y, Zhang P, Zhou D, Cheng Y, Zhou Y, Yang R, Wang X. Zhou J, et al. Microbes Infect. 2014 Mar;16(3):214-24. doi: 10.1016/j.micinf.2013.11.013. Epub 2013 Dec 11. Microbes Infect. 2014. PMID: 24333143 - Pestoides F, an atypical Yersinia pestis strain from the former Soviet Union.
Garcia E, Worsham P, Bearden S, Malfatti S, Lang D, Larimer F, Lindler L, Chain P. Garcia E, et al. Adv Exp Med Biol. 2007;603:17-22. doi: 10.1007/978-0-387-72124-8_2. Adv Exp Med Biol. 2007. PMID: 17966401 - Plague in the genomic area.
Drancourt M. Drancourt M. Clin Microbiol Infect. 2012 Mar;18(3):224-30. doi: 10.1111/j.1469-0691.2012.03774.x. Clin Microbiol Infect. 2012. PMID: 22369155 Review. - The plasmid-encoded outer-membrane proteins of Yersinia pestis.
Straley SC. Straley SC. Rev Infect Dis. 1988 Jul-Aug;10 Suppl 2:S323-6. doi: 10.1093/cid/10.supplement_2.s323. Rev Infect Dis. 1988. PMID: 3055200 Review.
Cited by
- Review of genotyping methods for Yersinia pestis in Madagascar.
Randriantseheno LN, Andrianaivoarimanana V, Pizarro-Cerdá J, Wagner DM, Rajerison M. Randriantseheno LN, et al. PLoS Negl Trop Dis. 2024 Jun 27;18(6):e0012252. doi: 10.1371/journal.pntd.0012252. eCollection 2024 Jun. PLoS Negl Trop Dis. 2024. PMID: 38935608 Free PMC article. Review. - Comparative genomics, pangenomics, and phenomic studies of Pectobacterium betavasculorum strains isolated from sugar beet, potato, sunflower, and artichoke: insights into pathogenicity, virulence determinants, and adaptation to the host plant.
Borowska-Beszta M, Smoktunowicz M, Horoszkiewicz D, Jonca J, Waleron MM, Gawor J, Mika A, Sledzinski T, Waleron K, Waleron M. Borowska-Beszta M, et al. Front Plant Sci. 2024 Mar 21;15:1352318. doi: 10.3389/fpls.2024.1352318. eCollection 2024. Front Plant Sci. 2024. PMID: 38576793 Free PMC article. - Characterization of an aspartate aminotransferase encoded by YPO0623 with frequent nonsense mutations in Yersinia pestis.
Jin J, Xiao L, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Yao W, Shen L, Cui Y, Tan Y, Han Y, Du Z, Cui Y, Yang R, Song K, Song Y. Jin J, et al. Front Cell Infect Microbiol. 2023 Nov 28;13:1288371. doi: 10.3389/fcimb.2023.1288371. eCollection 2023. Front Cell Infect Microbiol. 2023. PMID: 38089818 Free PMC article. - Regulatory Functions of PurR in Yersinia pestis: Orchestrating Diverse Biological Activities.
Xiao L, Jin J, Song K, Qian X, Wu Y, Sun Z, Xiong Z, Li Y, Zhao Y, Shen L, Cui Y, Yao W, Cui Y, Song Y. Xiao L, et al. Microorganisms. 2023 Nov 17;11(11):2801. doi: 10.3390/microorganisms11112801. Microorganisms. 2023. PMID: 38004812 Free PMC article. - The complex genomic diversity of Yersinia pestis on the long-term plague foci in Qinghai-Tibet plateau.
Liang J, Duan R, Qin S, Lv D, He Z, Zhang H, Duan Q, Xi J, Chun H, Fu G, Zheng X, Tang D, Wu W, Han H, Jing H, Wang X. Liang J, et al. Ecol Evol. 2023 Jul 28;13(8):e10387. doi: 10.1002/ece3.10387. eCollection 2023 Aug. Ecol Evol. 2023. PMID: 37529582 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources