The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis - PubMed (original) (raw)
Review
. 2004 Mar-Apr;11(2):99-107.
doi: 10.1080/10623320490482637.
Affiliations
- PMID: 15370069
- DOI: 10.1080/10623320490482637
Review
The two faces of endothelial nitric oxide synthase in the pathophysiology of atherosclerosis
Seinosuke Kawashima. Endothelium. 2004 Mar-Apr.
Abstract
In the endothelium, nitric oxide (NO) is constitutively generated from the conversion of L-arginine to L-citrullin by the enzymatic action of endothelial NO synthase (eNOS). An impairment of endothelium-dependent relaxation (EDR) is present in atherosclerotic vessels even before vascular structural changes occur, and represents the reduced eNOS-derived NO activity. Because of its multiple biological actions, NO from eNOS is believed to act as an anti-atherogenic molecule. On the other hand, there is increased production of superoxide in atherosclerotic vessels, which promotes atherogenesis. Recently it is revealed that eNOS becomes dysfunctional and produces superoxide rather than NO under various pathological conditions in which tissue levels of BH4 are reduced. The pathological role of dysfunctional eNOS has attracted attentions in vascular disorders including atherosclerosis, in which abnormal pteridine metabolisms in vascular tissue including decreased BH4 levels and increased BH2 levels have been demonstrated. The presence of dysfunctional eNOS may not only impair EDR but also accelerate lesion formation in atherosclerotic vessels. This review focuses on two faces of eNOS as both an NO- as well as superoxide-producing enzyme depending on tissue pteridine metabolisms in the pathophysiology of atherosclerosis.
Similar articles
- Dysfunction of endothelial nitric oxide synthase and atherosclerosis.
Kawashima S, Yokoyama M. Kawashima S, et al. Arterioscler Thromb Vasc Biol. 2004 Jun;24(6):998-1005. doi: 10.1161/01.ATV.0000125114.88079.96. Epub 2004 Mar 4. Arterioscler Thromb Vasc Biol. 2004. PMID: 15001455 Review. - Malfunction of vascular control in lifestyle-related diseases: endothelial nitric oxide (NO) synthase/NO system in atherosclerosis.
Kawashima S. Kawashima S. J Pharmacol Sci. 2004 Dec;96(4):411-9. doi: 10.1254/jphs.fmj04006x6. J Pharmacol Sci. 2004. PMID: 15613778 Review. - A specific role for eNOS-derived reactive oxygen species in atherosclerosis progression.
Takaya T, Hirata K, Yamashita T, Shinohara M, Sasaki N, Inoue N, Yada T, Goto M, Fukatsu A, Hayashi T, Alp NJ, Channon KM, Yokoyama M, Kawashima S. Takaya T, et al. Arterioscler Thromb Vasc Biol. 2007 Jul;27(7):1632-7. doi: 10.1161/ATVBAHA.107.142182. Epub 2007 Apr 26. Arterioscler Thromb Vasc Biol. 2007. PMID: 17463333 - Augmented BH4 by gene transfer restores nitric oxide synthase function in hyperglycemic human endothelial cells.
Cai S, Khoo J, Channon KM. Cai S, et al. Cardiovasc Res. 2005 Mar 1;65(4):823-31. doi: 10.1016/j.cardiores.2004.10.040. Cardiovasc Res. 2005. PMID: 15721862 - Nitric oxide dynamics and endothelial dysfunction in type II model of genetic diabetes.
Bitar MS, Wahid S, Mustafa S, Al-Saleh E, Dhaunsi GS, Al-Mulla F. Bitar MS, et al. Eur J Pharmacol. 2005 Mar 21;511(1):53-64. doi: 10.1016/j.ejphar.2005.01.014. Eur J Pharmacol. 2005. PMID: 15777779
Cited by
- Foxo1 links hyperglycemia to LDL oxidation and endothelial nitric oxide synthase dysfunction in vascular endothelial cells.
Tanaka J, Qiang L, Banks AS, Welch CL, Matsumoto M, Kitamura T, Ido-Kitamura Y, DePinho RA, Accili D. Tanaka J, et al. Diabetes. 2009 Oct;58(10):2344-54. doi: 10.2337/db09-0167. Epub 2009 Jul 7. Diabetes. 2009. PMID: 19584310 Free PMC article. - Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs.
Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Woźniak M, Lejnowski D, Collawn JF, Bartoszewski R. Kalinowski L, et al. Cell Mol Biol Lett. 2016 Sep 6;21:16. doi: 10.1186/s11658-016-0017-x. eCollection 2016. Cell Mol Biol Lett. 2016. PMID: 28536619 Free PMC article. Review. - Endothelial Dysfunction in Type 2 Diabetes Mellitus.
Dhananjayan R, Koundinya KS, Malati T, Kutala VK. Dhananjayan R, et al. Indian J Clin Biochem. 2016 Oct;31(4):372-9. doi: 10.1007/s12291-015-0516-y. Epub 2015 Sep 29. Indian J Clin Biochem. 2016. PMID: 27605734 Free PMC article. Review. - (-)-Epicatechin Modulates Mitochondrial Redox in Vascular Cell Models of Oxidative Stress.
Keller A, Hull SE, Elajaili H, Johnston A, Knaub LA, Chun JH, Walker L, Nozik-Grayck E, Reusch JEB. Keller A, et al. Oxid Med Cell Longev. 2020 Jun 9;2020:6392629. doi: 10.1155/2020/6392629. eCollection 2020. Oxid Med Cell Longev. 2020. PMID: 32587663 Free PMC article. - Differential Mitochondrial Adaptation in Primary Vascular Smooth Muscle Cells from a Diabetic Rat Model.
Keller AC, Knaub LA, McClatchey PM, Connon CA, Bouchard R, Miller MW, Geary KE, Walker LA, Klemm DJ, Reusch JE. Keller AC, et al. Oxid Med Cell Longev. 2016;2016:8524267. doi: 10.1155/2016/8524267. Epub 2016 Jan 11. Oxid Med Cell Longev. 2016. PMID: 27034743 Free PMC article.