Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma - PubMed (original) (raw)
Selective intermediate-/small-conductance calcium-activated potassium channel (KCNN4) blockers are potent and effective therapeutics in experimental brain oedema and traumatic brain injury caused by acute subdural haematoma
Frank Mauler et al. Eur J Neurosci. 2004 Oct.
Abstract
Early deterioration and death after brain injury is often the result of oedema in the injured and peri-lesional tissue. So far, no pharmacotherapy is available that exhibits significant brain oedema-reducing efficacy in patients. We selected two low molecular weight compounds from different chemical classes, a triazole (1-[(2-chlorophenyl)diphenylmethyl]-1,2,3-triazole) and a cyclohexadiene (methyl 4-[4-chloro-3-(trifluoromethyl)phenyl]-6-methyl-3-oxo-1,4,7-tetrahydroisobenzofuran-5-carboxylate) to characterize their pharmacological properties on KCNN4 channels (intermediate/small conductance calcium-activated potassium channel, subfamily N, member 4) in vitro as well as in vivo. In vitro we replaced potassium by rubidium (Rb+) and determined Rb+ fluxes evoked by 10 micro m of the calcium ionophore A23187 on C6BU1 rat glioma cells. Compared with known KCNN4 blockers, such as clotrimazole (IC50=360 +/- 12 nm) and charybdotoxin (IC50=3.3 +/- 1.9 nm), the triazole and cyclohexadiene were considerably more potent than clotrimazole and displayed similar potencies (IC50=12.1 +/- 8.8 and 13.3 +/- 4.7 nm, respectively). In the rat acute subdural haematoma model, both the triazole and cyclohexadiene displayed reduction of brain water content (-26% at 0.3 mg/kg and -24% at 0.01 mg/kg) and reduction of the intracranial pressure (-46% at 0.1 mg/kg and -60% at 0.003 mg/kg) after 24 h when administered as a 4-h infusion immediately after brain injury. When infarct volumes were determined after 7 days, the triazole as well as the cyclohexadiene displayed strong neuroprotective efficacy (-52% infarct volume reduction at 1.2 mg/kg and -43% at 0.04 mg/kg, respectively). It is concluded that blockade of KCNN4 channels is a new pharmacological approach to attenuate acute brain damage caused by traumatic brain injury.
Similar articles
- IKCa-channel blockers. Part 2: discovery of cyclohexadienes.
Urbahns K, Goldmann S, Krüger J, Horváth E, Schuhmacher J, Grosser R, Hinz V, Mauler F. Urbahns K, et al. Bioorg Med Chem Lett. 2005 Jan 17;15(2):401-4. doi: 10.1016/j.bmcl.2004.10.063. Bioorg Med Chem Lett. 2005. PMID: 15603962 - Blockade of the intermediate-conductance calcium-activated potassium channel as a new therapeutic strategy for restenosis.
Köhler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kämpfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J. Köhler R, et al. Circulation. 2003 Sep 2;108(9):1119-25. doi: 10.1161/01.CIR.0000086464.04719.DD. Epub 2003 Aug 25. Circulation. 2003. PMID: 12939222 - Selective blockade of the intermediate-conductance Ca2+-activated K+ channel suppresses proliferation of microvascular and macrovascular endothelial cells and angiogenesis in vivo.
Grgic I, Eichler I, Heinau P, Si H, Brakemeier S, Hoyer J, Köhler R. Grgic I, et al. Arterioscler Thromb Vasc Biol. 2005 Apr;25(4):704-9. doi: 10.1161/01.ATV.0000156399.12787.5c. Epub 2005 Jan 20. Arterioscler Thromb Vasc Biol. 2005. PMID: 15662023 - Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications.
Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. Wulff H, et al. Curr Med Chem. 2007;14(13):1437-57. doi: 10.2174/092986707780831186. Curr Med Chem. 2007. PMID: 17584055 Review. - Water, water, everywhere: sodium and water balance and the injured brain.
Lukaszewicz AC, Soyer B, Payen D. Lukaszewicz AC, et al. Curr Opin Anaesthesiol. 2011 Apr;24(2):138-43. doi: 10.1097/ACO.0b013e32834458af. Curr Opin Anaesthesiol. 2011. PMID: 21386666 Review.
Cited by
- NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease.
Strøbæk D, Brown DT, Jenkins DP, Chen YJ, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J, Wulff H, Christophersen P. Strøbæk D, et al. Br J Pharmacol. 2013 Jan;168(2):432-44. doi: 10.1111/j.1476-5381.2012.02143.x. Br J Pharmacol. 2013. PMID: 22891655 Free PMC article. - Therapeutic potential of KCa3.1 blockers: recent advances and promising trends.
Wulff H, Castle NA. Wulff H, et al. Expert Rev Clin Pharmacol. 2010 May;3(3):385-96. doi: 10.1586/ecp.10.11. Expert Rev Clin Pharmacol. 2010. PMID: 22111618 Free PMC article. - Amyloid-beta protein oligomer at low nanomolar concentrations activates microglia and induces microglial neurotoxicity.
Maezawa I, Zimin PI, Wulff H, Jin LW. Maezawa I, et al. J Biol Chem. 2011 Feb 4;286(5):3693-706. doi: 10.1074/jbc.M110.135244. Epub 2010 Oct 22. J Biol Chem. 2011. PMID: 20971854 Free PMC article. - Inhibition of the Ca²⁺-dependent K⁺ channel, KCNN4/KCa3.1, improves tissue protection and locomotor recovery after spinal cord injury.
Bouhy D, Ghasemlou N, Lively S, Redensek A, Rathore KI, Schlichter LC, David S. Bouhy D, et al. J Neurosci. 2011 Nov 9;31(45):16298-308. doi: 10.1523/JNEUROSCI.0047-11.2011. J Neurosci. 2011. PMID: 22072681 Free PMC article. - Human neuronal changes in brain edema and increased intracranial pressure.
Faragó N, Kocsis ÁK, Braskó C, Lovas S, Rózsa M, Baka J, Kovács B, Mikite K, Szemenyei V, Molnár G, Ozsvár A, Oláh G, Piszár I, Zvara Á, Patócs A, Barzó P, Puskás LG, Tamás G. Faragó N, et al. Acta Neuropathol Commun. 2016 Aug 4;4(1):78. doi: 10.1186/s40478-016-0356-x. Acta Neuropathol Commun. 2016. PMID: 27487831 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases