Analysis of array CGH data: from signal ratio to gain and loss of DNA regions - PubMed (original) (raw)
Comparative Study
. 2004 Dec 12;20(18):3413-22.
doi: 10.1093/bioinformatics/bth418. Epub 2004 Sep 20.
Affiliations
- PMID: 15381628
- DOI: 10.1093/bioinformatics/bth418
Comparative Study
Analysis of array CGH data: from signal ratio to gain and loss of DNA regions
Philippe Hupé et al. Bioinformatics. 2004.
Abstract
Motivation: Genomic DNA regions are frequently lost or gained during tumor progression. Array Comparative Genomic Hybridization (array CGH) technology makes it possible to assess these changes in DNA in cancers, by comparison with a normal reference. The identification of systematically deleted or amplified genomic regions in a set of tumors enables biologists to identify genes involved in cancer progression because tumor suppressor genes are thought to be located in lost genomic regions and oncogenes, in gained regions. Array CGH profiles should also improve the classification of tumors. The achievement of these goals requires a methodology for detecting the breakpoints delimiting altered regions in genomic patterns and assigning a status (normal, gained or lost) to each chromosomal region.
Results: We have developed a methodology for the automatic detection of breakpoints from array CGH profile, and the assignment of a status to each chromosomal region. The breakpoint detection step is based on the Adaptive Weights Smoothing (AWS) procedure and provides highly convincing results: our algorithm detects 97, 100 and 94% of breakpoints in simulated data, karyotyping results and manually analyzed profiles, respectively. The percentage of correctly assigned statuses ranges from 98.9 to 99.8% for simulated data and is 100% for karyotyping results. Our algorithm also outperforms other solutions on a public reference dataset.
Availability: The R package GLAD (Gain and Loss Analysis of DNA) is available upon request.
Similar articles
- Breakpoint identification and smoothing of array comparative genomic hybridization data.
Jong K, Marchiori E, Meijer G, Vaart AV, Ylstra B. Jong K, et al. Bioinformatics. 2004 Dec 12;20(18):3636-7. doi: 10.1093/bioinformatics/bth355. Epub 2004 Jun 16. Bioinformatics. 2004. PMID: 15201182 - Quantile smoothing of array CGH data.
Eilers PH, de Menezes RX. Eilers PH, et al. Bioinformatics. 2005 Apr 1;21(7):1146-53. doi: 10.1093/bioinformatics/bti148. Epub 2004 Nov 30. Bioinformatics. 2005. PMID: 15572474 - CGH-Explorer: a program for analysis of array-CGH data.
Lingjaerde OC, Baumbusch LO, Liestøl K, Glad IK, Børresen-Dale AL. Lingjaerde OC, et al. Bioinformatics. 2005 Mar;21(6):821-2. doi: 10.1093/bioinformatics/bti113. Epub 2004 Nov 5. Bioinformatics. 2005. PMID: 15531610 - Cytogenetic analysis from DNA by comparative genomic hybridization.
Tachdjian G, Aboura A, Lapierre JM, Viguié F. Tachdjian G, et al. Ann Genet. 2000 Jul-Dec;43(3-4):147-54. doi: 10.1016/s0003-3995(00)01028-5. Ann Genet. 2000. PMID: 11164197 Review. - [Genomic profiling: from molecular cytogenetics to DNA arrays].
Theillet C, Orsetti B, Redon R, Manoir SD. Theillet C, et al. Bull Cancer. 2001 Mar;88(3):261-8. Bull Cancer. 2001. PMID: 11313203 Review. French.
Cited by
- Bayesian Hidden Markov Modeling of Array CGH Data.
Guha S, Li Y, Neuberg D. Guha S, et al. J Am Stat Assoc. 2008 Jun 1;103(482):485-497. doi: 10.1198/016214507000000923. J Am Stat Assoc. 2008. PMID: 22375091 Free PMC article. - A system-level approach identifies HIF-2α as a critical regulator of chondrosarcoma progression.
Kim H, Cho Y, Kim HS, Kang D, Cheon D, Kim YJ, Chang MJ, Lee KM, Chang CB, Kang SB, Kang HG, Kim JH. Kim H, et al. Nat Commun. 2020 Oct 6;11(1):5023. doi: 10.1038/s41467-020-18817-7. Nat Commun. 2020. PMID: 33024108 Free PMC article. - TumorBoost: normalization of allele-specific tumor copy numbers from a single pair of tumor-normal genotyping microarrays.
Bengtsson H, Neuvial P, Speed TP. Bengtsson H, et al. BMC Bioinformatics. 2010 May 12;11:245. doi: 10.1186/1471-2105-11-245. BMC Bioinformatics. 2010. PMID: 20462408 Free PMC article. - A method for detecting significant genomic regions associated with oral squamous cell carcinoma using aCGH.
Kim KY, Kim J, Kim HJ, Nam W, Cha IH. Kim KY, et al. Med Biol Eng Comput. 2010 May;48(5):459-68. doi: 10.1007/s11517-010-0595-0. Epub 2010 Mar 20. Med Biol Eng Comput. 2010. PMID: 20306232 - Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data.
Lai WR, Johnson MD, Kucherlapati R, Park PJ. Lai WR, et al. Bioinformatics. 2005 Oct 1;21(19):3763-70. doi: 10.1093/bioinformatics/bti611. Epub 2005 Aug 4. Bioinformatics. 2005. PMID: 16081473 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources