Lyn contributes to regulation of multiple Kit-dependent signaling pathways in murine bone marrow mast cells - PubMed (original) (raw)

Lyn contributes to regulation of multiple Kit-dependent signaling pathways in murine bone marrow mast cells

R Shivakrupa et al. Cell Signal. 2005 Jan.

Abstract

SCF induces autophosphorylation of Kit and activates a variety of signaling components including Jnks, Erks, PI 3 Kinase, the JAK-Stat pathway and members of the Src family. Previously we showed that Lyn is activated at multiple points during SCF-induced cell cycle progression and contributes to SCF-mediated growth, chemotaxis and internalization of Kit. However, the Kit-dependent biochemical events that require Lyn are unknown. In this study, we used Lyn-deficient bone marrow mast cells (BMMC) to examine the contribution of this Src family member to tyrosine phosphorylation of Kit and SCF-induced activation of Jnks, Akt, Stat3 and Erks. Although surface expression of Kit was increased in Lyn-deficient BMMC, SCF-induced phosphorylation and growth was reduced compared to wild-type BMMC. Downstream of Kit, SCF-induced activation of Jnks was markedly reduced in Lyn-deficient BMMC. Further, Lyn was required for SCF-induced tyrosine phosphorylation of Stat3. Interestingly, Kit was constitutively associated with PI 3 Kinase in Lyn-deficient BMMC and this correlated with constitutive phosphorylation of Akt. This was in marked contrast to wild-type BMMC, where both these events were induced by SCF. These data indicate that in BMMC, Lyn contributes to SCF-induced phosphorylation of Kit, as well as phosphorylation of Jnks and Stat3. In contrast, Lyn may negatively regulate the PI 3 Kinase/Akt pathway. The opposing effects of Lyn on these signaling pathways may explain the pleiotropic effects ascribed to this Src family member in the literature.

Copyright 2004 Elsevier Inc.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources