Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees - PubMed (original) (raw)
Comparative Study
. 2004 Oct 12;101(41):14830-4.
doi: 10.1073/pnas.0404894101. Epub 2004 Oct 4.
Affiliations
- PMID: 15466715
- PMCID: PMC522029
- DOI: 10.1073/pnas.0404894101
Comparative Study
Divergence of T2R chemosensory receptor families in humans, bonobos, and chimpanzees
Christopher M Parry et al. Proc Natl Acad Sci U S A. 2004.
Abstract
T2R (Tas2R) genes encode a family of G protein-coupled gustatory receptors, several involved in bitter taste perception. So far, few ligands for these receptors have been identified, and the specificity of most T2Rs is unclear. Differences between individual T2Rs result in altered taste perception in either specificity or sensitivity. All 33 human T2Rs are characterized by significant sequence homology. However, with a total of eight pseudogenes and >83 coding region single-nucleotide polymorphisms, the family displays broad diversity. The underlying variability of individual T2Rs might be the source for personalized taste perception. To test this hypothesis and also to identify T2Rs that possibly function beyond bitter taste, we compared all human T2R genes with those of the closely related primate species Pan paniscus (bonobo) and Pan troglodytes (chimpanzee). The differences identified range from large sequence alterations to nonsynonymous and synonymous changes of single base pairs. In contrast to olfactory receptors, no human-specific loss of the amount of functional genes was observed. Taken together, the results indicate ongoing evolutionary diversification of T2R receptors and a role for T2Rs in dietary adaptation and personalized food uptake.
Figures
Fig. 1.
Cladogram of pseudogenes in hT2R, bT2R, and cT2R DNA. Upon divergence from the common primate ancestor, T2R65PS, PS5, PS3, PS8, PS7, and T2R63PS remained nonfunctional across all species. T2R9 is a pseudogene only in bonobos, whereas T2R62 is a pseudogene only in humans. T2R64 is functional only in bonobos. Moreover, in bonobos, a new T2R with close relation to T2R46 has been identified (not shown; see text). The graph indicates no species-specific loss of T2R function upon primate divergence and instead species-dependent specialization. The cladogram for all T2Rs analyzed is available in Fig. 5, which is published as
supporting information
on the PNAS web site.
Fig. 2.
Pseudogenes of selected human, bonobo, and cT2Rs. (A) For hT2R62, an 18-bp indel at position 625 inserts an additional stop codon into the genomic entry that is absent in the database entry. A read through of these two stop codons in both bonobos and chimpanzees converts c/bT2R62 into a functional gene. (B) A read through of the stop codon in hT2R64 leads to a functional gene in bonobos. (C) In bT2R9, deletion of thymidine 431 induces a frame shift, introducing a downstream stop codon.
Fig. 3.
C-terminal alterations across species. (A) A single-nucleotide deletion of an adenosine at position 967 of the database hT2R39 leads to a frameshift affecting the subsequent 15 C-terminal amino acids. (B) A SNP at position 955 of T2R7 introduces a stop codon in the database version that is found neither in the human genome nor in the great apes. (C) The bonobo T2R45 has an extended 3′ end to the human ORF. Tryptophan replaces the stop codon found in humans, adding 27 coding base pairs.
Similar articles
- Diversification of bitter taste receptor gene family in western chimpanzees.
Sugawara T, Go Y, Udono T, Morimura N, Tomonaga M, Hirai H, Imai H. Sugawara T, et al. Mol Biol Evol. 2011 Feb;28(2):921-31. doi: 10.1093/molbev/msq279. Epub 2010 Oct 20. Mol Biol Evol. 2011. PMID: 20961961 - Adaptive diversification of bitter taste receptor genes in Mammalian evolution.
Shi P, Zhang J, Yang H, Zhang YP. Shi P, et al. Mol Biol Evol. 2003 May;20(5):805-14. doi: 10.1093/molbev/msg083. Epub 2003 Apr 2. Mol Biol Evol. 2003. PMID: 12679530 - Positive Darwinian selection in the singularly large taste receptor gene family of an 'ancient' fish, Latimeria chalumnae.
Syed AS, Korsching SI. Syed AS, et al. BMC Genomics. 2014 Aug 5;15(1):650. doi: 10.1186/1471-2164-15-650. BMC Genomics. 2014. PMID: 25091523 Free PMC article. - Bitter taste receptors: Novel insights into the biochemistry and pharmacology.
Jaggupilli A, Howard R, Upadhyaya JD, Bhullar RP, Chelikani P. Jaggupilli A, et al. Int J Biochem Cell Biol. 2016 Aug;77(Pt B):184-96. doi: 10.1016/j.biocel.2016.03.005. Epub 2016 Mar 16. Int J Biochem Cell Biol. 2016. PMID: 26995065 Review. - Constitutive activity of bitter taste receptors (T2Rs).
Pydi SP, Bhullar RP, Chelikani P. Pydi SP, et al. Adv Pharmacol. 2014;70:303-26. doi: 10.1016/B978-0-12-417197-8.00010-9. Adv Pharmacol. 2014. PMID: 24931200 Review.
Cited by
- Giving a voice to "the silent killer": a knowledge, attitude and practice study of diabetes among French Guiana's Parikweneh people.
Rapinski M, Cuerrier A, Davy D. Rapinski M, et al. J Ethnobiol Ethnomed. 2024 Sep 5;20(1):83. doi: 10.1186/s13002-024-00713-9. J Ethnobiol Ethnomed. 2024. PMID: 39237925 Free PMC article. - Sequence Analysis of Bitter Taste Receptor Gene Repertoires in Different Ruminant Species.
Monteiro Ferreira A, Tomás Marques A, Bhide M, Cubric-Curik V, Hollung K, Knight CH, Raundrup K, Lippolis J, Palmer M, Sales-Baptista E, Araújo SS, de Almeida AM. Monteiro Ferreira A, et al. PLoS One. 2015 Jun 10;10(6):e0124933. doi: 10.1371/journal.pone.0124933. eCollection 2015. PLoS One. 2015. PMID: 26061084 Free PMC article. - Loss of gene function and evolution of human phenotypes.
Oh HJ, Choi D, Goh CJ, Hahn Y. Oh HJ, et al. BMB Rep. 2015 Jul;48(7):373-9. doi: 10.5483/bmbrep.2015.48.7.073. BMB Rep. 2015. PMID: 25887751 Free PMC article. Review. - Diet shapes the evolution of the vertebrate bitter taste receptor gene repertoire.
Li D, Zhang J. Li D, et al. Mol Biol Evol. 2014 Feb;31(2):303-9. doi: 10.1093/molbev/mst219. Epub 2013 Nov 7. Mol Biol Evol. 2014. PMID: 24202612 Free PMC article. - GWAS of human bitter taste perception identifies new loci and reveals additional complexity of bitter taste genetics.
Ledda M, Kutalik Z, Souza Destito MC, Souza MM, Cirillo CA, Zamboni A, Martin N, Morya E, Sameshima K, Beckmann JS, le Coutre J, Bergmann S, Genick UK. Ledda M, et al. Hum Mol Genet. 2014 Jan 1;23(1):259-67. doi: 10.1093/hmg/ddt404. Epub 2013 Aug 20. Hum Mol Genet. 2014. PMID: 23966204 Free PMC article.
References
- Zhao, G. Q., Zhang, Y., Hoon, M. A., Chandrashekar, J., Erlenbach, I., Ryba, N. J. & Zuker, C. S. (2003) Cell 115, 255–266. - PubMed
- Zhang, Y., Hoon, M. A., Chandrashekar, J., Mueller, K. L., Cook, B., Wu, D., Zuker, C. S. & Ryba, N. J. (2003) Cell 112, 293–301. - PubMed
- Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J. & Zuker, C. S. (2002) Nature 416, 199–202. - PubMed
- Nelson, G., Hoon, M. A., Chandrashekar, J., Zhang, Y., Ryba, N. J. & Zuker, C. S. (2001) Cell 106, 381–390. - PubMed
- Chandrashekar, J., Mueller, K. L., Hoon, M. A., Adler, E., Feng, L., Guo, W., Zuker, C. S. & Ryba, N. J. (2000) Cell 100, 703–711. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources