Hippocampal synaptic plasticity in mice devoid of cellular prion protein - PubMed (original) (raw)
Hippocampal synaptic plasticity in mice devoid of cellular prion protein
Laura E Maglio et al. Brain Res Mol Brain Res. 2004.
Abstract
The cellular prion protein plays a role in the etiology of transmissible and inherited spongiform encephalopathies. However, the physiological role of the cellular prion protein is still under debate. Results regarding the synaptic transmission using the same strain of animals where the cellular prion protein gene was ablated are controversial, and need further investigation. In this work, we have studied the hippocampal synaptic transmission in mice devoid of normal cellular prion protein, and have shown that these animals present an increased excitability in this area by the lower threshold (20 Hz) to generate long-term potentiation (LTP) in hippocampal dentate gyrus when compared to wild-type animals. The mice devoid of normal cellular prion protein are also more sensitive to the blocking effects of dizocilpine and 2-amino-5-phosphonopentanoic acid on the hippocampal long-term potentiation generation. In situ hydridization experiments demonstrated overexpression of the mRNAs for the N-methyl-D-aspartate (NMDA) receptor NR2A and NR2B subunits in mice devoid of normal cellular prion protein. Therefore, our results indicate that these animals have an increased hippocampal synaptic plasticity which can be explained by a facilitated glutamatergic transmission. The higher expression of specific N-methyl-d-aspartate receptor subunits may account for these effects.
Similar articles
- Role of cellular prion protein on LTP expression in aged mice.
Maglio LE, Martins VR, Izquierdo I, Ramirez OA. Maglio LE, et al. Brain Res. 2006 Jun 30;1097(1):11-8. doi: 10.1016/j.brainres.2006.04.056. Epub 2006 May 30. Brain Res. 2006. PMID: 16730679 - N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
Zhong WX, Dong ZF, Tian M, Cao J, Xu L, Luo JH. Zhong WX, et al. Neuroscience. 2006 Sep 1;141(3):1399-413. doi: 10.1016/j.neuroscience.2006.04.070. Epub 2006 Jun 12. Neuroscience. 2006. PMID: 16766131 - Differential expression of NMDA and AMPA receptor subunits in rat dorsal and ventral hippocampus.
Pandis C, Sotiriou E, Kouvaras E, Asprodini E, Papatheodoropoulos C, Angelatou F. Pandis C, et al. Neuroscience. 2006 Jun 19;140(1):163-75. doi: 10.1016/j.neuroscience.2006.02.003. Epub 2006 Mar 20. Neuroscience. 2006. PMID: 16542781 - Cellular prion protein null mice display normal AMPA receptor mediated long term depression.
Khosravani H, Zhang Y, Zamponi GW. Khosravani H, et al. Prion. 2008 Apr-Jun;2(2):48-50. doi: 10.4161/pri.2.2.6628. Epub 2008 Apr 16. Prion. 2008. PMID: 19098438 Free PMC article. Review. - Exercising our brains: how physical activity impacts synaptic plasticity in the dentate gyrus.
Christie BR, Eadie BD, Kannangara TS, Robillard JM, Shin J, Titterness AK. Christie BR, et al. Neuromolecular Med. 2008;10(2):47-58. doi: 10.1007/s12017-008-8033-2. Epub 2008 Jun 6. Neuromolecular Med. 2008. PMID: 18535925 Review.
Cited by
- PrP C as a Transducer of Physiological and Pathological Signals.
Panes JD, Saavedra P, Pineda B, Escobar K, Cuevas ME, Moraga-Cid G, Fuentealba J, Rivas CI, Rezaei H, Muñoz-Montesino C. Panes JD, et al. Front Mol Neurosci. 2021 Nov 22;14:762918. doi: 10.3389/fnmol.2021.762918. eCollection 2021. Front Mol Neurosci. 2021. PMID: 34880726 Free PMC article. Review. - Prions Strongly Reduce NMDA Receptor S-Nitrosylation Levels at Pre-symptomatic and Terminal Stages of Prion Diseases.
Meneghetti E, Gasperini L, Virgilio T, Moda F, Tagliavini F, Benetti F, Legname G. Meneghetti E, et al. Mol Neurobiol. 2019 Sep;56(9):6035-6045. doi: 10.1007/s12035-019-1505-6. Epub 2019 Feb 1. Mol Neurobiol. 2019. PMID: 30710214 - Inhibition of IL-1β Signaling Normalizes NMDA-Dependent Neurotransmission and Reduces Seizure Susceptibility in a Mouse Model of Creutzfeldt-Jakob Disease.
Bertani I, Iori V, Trusel M, Maroso M, Foray C, Mantovani S, Tonini R, Vezzani A, Chiesa R. Bertani I, et al. J Neurosci. 2017 Oct 25;37(43):10278-10289. doi: 10.1523/JNEUROSCI.1301-17.2017. Epub 2017 Sep 18. J Neurosci. 2017. PMID: 28924012 Free PMC article. - The biological function of the cellular prion protein: an update.
Wulf MA, Senatore A, Aguzzi A. Wulf MA, et al. BMC Biol. 2017 May 2;15(1):34. doi: 10.1186/s12915-017-0375-5. BMC Biol. 2017. PMID: 28464931 Free PMC article. Review. - The N Terminus of the Prion Protein Mediates Functional Interactions with the Neuronal Cell Adhesion Molecule (NCAM) Fibronectin Domain.
Slapšak U, Salzano G, Amin L, Abskharon RN, Ilc G, Zupančič B, Biljan I, Plavec J, Giachin G, Legname G. Slapšak U, et al. J Biol Chem. 2016 Oct 14;291(42):21857-21868. doi: 10.1074/jbc.M116.743435. Epub 2016 Aug 17. J Biol Chem. 2016. PMID: 27535221 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases