The pathway for the production of inositol hexakisphosphate in human cells - PubMed (original) (raw)
. 2005 Jan 21;280(3):1911-20.
doi: 10.1074/jbc.M411528200. Epub 2004 Nov 5.
Affiliations
- PMID: 15531582
- DOI: 10.1074/jbc.M411528200
Free article
The pathway for the production of inositol hexakisphosphate in human cells
John W Verbsky et al. J Biol Chem. 2005.
Free article
Abstract
The yeast and Drosophila pathways leading to the production of inositol hexakisphosphate (InsP(6)) have been elucidated recently. The in vivo pathway in humans has been assumed to be similar. Here we show that overexpression of Ins(1,3,4)P(3) 5/6-kinase in human cell lines results in an increase of inositol tetrakisphosphate (InsP(4)) isomers, inositol pentakisphosphate (InsP(5)) and InsP(6), whereas its depletion by RNA interference decreases the amounts of these inositol phosphates. Expression of Ins(1,3,4,6)P(4) 5-kinase does not increase the amount of InsP(5) and InsP(6), although its depletion does block InsP(5) and InsP(6) production, showing that it is necessary for production of InsP(5) and InsP(6). Expression of Ins(1,3,4,5,6)P(5) 2-kinase increases the amount of InsP(6) by depleting the InsP(5) in the cell, and depletion of 2-kinase decreases the amount of InsP(6) and causes an increase in InsP(5). These results are consistent with a pathway that produces InsP(6) through the sequential action of Ins(1,3,4)P(3) 5/6-kinase, Ins(1,3,4,6)P(4) 5-kinase, and Ins(1,3,4,5,6)P5 2-kinase to convert Ins(1,3,4)P(3) to InsP(6). Furthermore, the evidence implicates 5/6-kinase as the rate-limiting enzyme in this pathway.
Similar articles
- The synthesis of inositol hexakisphosphate. Characterization of human inositol 1,3,4,5,6-pentakisphosphate 2-kinase.
Verbsky JW, Wilson MP, Kisseleva MV, Majerus PW, Wente SR. Verbsky JW, et al. J Biol Chem. 2002 Aug 30;277(35):31857-62. doi: 10.1074/jbc.M205682200. Epub 2002 Jun 25. J Biol Chem. 2002. PMID: 12084730 - Expression pattern of inositol phosphate-related enzymes in rice (Oryza sativa L.): implications for the phytic acid biosynthetic pathway.
Suzuki M, Tanaka K, Kuwano M, Yoshida KT. Suzuki M, et al. Gene. 2007 Dec 15;405(1-2):55-64. doi: 10.1016/j.gene.2007.09.006. Epub 2007 Sep 14. Gene. 2007. PMID: 17961936 - Phytic acid synthesis and vacuolar accumulation in suspension-cultured cells of Catharanthus roseus induced by high concentration of inorganic phosphate and cations.
Mitsuhashi N, Ohnishi M, Sekiguchi Y, Kwon YU, Chang YT, Chung SK, Inoue Y, Reid RJ, Yagisawa H, Mimura T. Mitsuhashi N, et al. Plant Physiol. 2005 Jul;138(3):1607-14. doi: 10.1104/pp.105.060269. Epub 2005 Jun 17. Plant Physiol. 2005. PMID: 15965017 Free PMC article. - Assessing the omnipotence of inositol hexakisphosphate.
Shears SB. Shears SB. Cell Signal. 2001 Mar;13(3):151-8. doi: 10.1016/s0898-6568(01)00129-2. Cell Signal. 2001. PMID: 11282453 Review. - Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate.
Sauer K, Cooke MP. Sauer K, et al. Nat Rev Immunol. 2010 Apr;10(4):257-71. doi: 10.1038/nri2745. Nat Rev Immunol. 2010. PMID: 20336153 Free PMC article. Review.
Cited by
- Are Inositol Polyphosphates the Missing Link in Dynamic Cullin RING Ligase Regulation by the COP9 Signalosome?
Zhang X, Rao F. Zhang X, et al. Biomolecules. 2019 Aug 7;9(8):349. doi: 10.3390/biom9080349. Biomolecules. 2019. PMID: 31394817 Free PMC article. Review. - Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells.
Sowd GA, Aiken C. Sowd GA, et al. PLoS Pathog. 2021 Jan 21;17(1):e1009190. doi: 10.1371/journal.ppat.1009190. eCollection 2021 Jan. PLoS Pathog. 2021. PMID: 33476323 Free PMC article. - Disruption of the mouse inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene, associated lethality, and tissue distribution of 2-kinase expression.
Verbsky J, Lavine K, Majerus PW. Verbsky J, et al. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8448-53. doi: 10.1073/pnas.0503656102. Epub 2005 Jun 6. Proc Natl Acad Sci U S A. 2005. PMID: 15939868 Free PMC article. - MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis.
Zou J, Chang SC, Marjanovic J, Majerus PW. Zou J, et al. J Biol Chem. 2009 Jan 23;284(4):2064-71. doi: 10.1074/jbc.M804292200. Epub 2008 Nov 27. J Biol Chem. 2009. PMID: 19038970 Free PMC article. - Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress.
Choi JH, Williams J, Cho J, Falck JR, Shears SB. Choi JH, et al. J Biol Chem. 2007 Oct 19;282(42):30763-75. doi: 10.1074/jbc.M704655200. Epub 2007 Aug 16. J Biol Chem. 2007. PMID: 17702752 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous