Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712 - PubMed (original) (raw)

Comparative Study

doi: 10.1124/mol.104.007252. Epub 2004 Nov 8.

Affiliations

Comparative Study

Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712

Mohamed Trebak et al. Mol Pharmacol. 2005 Feb.

Abstract

TRPC3 is a nonselective cation channel member of the "canonical" transient receptor potential (TRPC) family whose members are activated by phospholipase C-coupled receptors. TRPC3 can be activated by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) in a protein kinase C-independent manner. On the other hand, phorbol 12-myristate 13-acetate (PMA) inhibits OAG-mediated TRPC3 channel activation, suggesting that phosphorylation of TRPC3 by protein kinase C is a mechanism of receptor-mediated negative feedback. Here, we show PMA-induced phosphorylation of TRPC3 channels in vivo. We demonstrate by site-directed mutagenesis that a single site containing Ser(712) and conserved among all members of the TRPC family is essential for protein kinase C-mediated negative regulation of TRPC3. In human embryonic kidney 293 cells expressing a TRPC3 mutant in which Ser(712) was replaced by alanine (S712A), PMA failed to block channel activation, whereas wild-type TRPC3 activity was completely inhibited. Phosphorylation of the S712A TRPC3 mutant was not stimulated in response to PMA treatment. Furthermore, S712A TRPC3 mutant-mediated Ca(2+) entry after methacholine activation was significantly greater than that of wild-type TRPC3. These findings demonstrate a dual role for phospholipase C-generated diacylglycerol, which serves as a signal for TRPC3 activation as well as a signal for negative feedback via protein kinase C-mediated phosphorylation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources