Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells - PubMed (original) (raw)
Review
Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells
Evangelos D Michelakis et al. J Mol Cell Cardiol. 2004 Dec.
Abstract
Hypoxic pulmonary vasoconstriction (HPV) is a widely-conserved mechanism for matching ventilation and perfusion that optimizes systemic PO(2). HPV is elicited by moderate alveolar hypoxia through a mechanism that is intrinsic to the pulmonary circulation, particularly the resistance pulmonary arteries (PA), and is robust even in isolated perfused lungs. Although modulated by the endothelium, HPV persists in denuded PA rings and PA smooth muscle cells (PASMC). Beginning within seconds of hypoxia, HPV plateaus in minutes and persists for hours. During focal hypoxia (e.g. atelectasis), HPV is restricted to the vascular segments serving hypoxic lobes, and diverts blood to better-ventilated segments without causing pulmonary hypertension (PHT). However, with global hypoxia, as occurs at high altitude or in the fetal lung, HPV increases pulmonary vascular resistance (PVR) and may contribute to PHT. This review focuses on a comprehensive Redox Theory of HPV but considers relevant modulatory factors (endothelin), triggering stimuli (cyclic ADP-ribose-induced release of sarcoplasmic reticulum (SR) Ca(2+)) and sustaining pathways (Rho kinase-modulated Ca(2+) sensitization of the contractile apparatus). The Redox Theory proposes that an O(2)-sensor in resistance PASMC (complexes I and III of the mitochondrial electron transport chain (ETC)) generates reactive O(2) species (ROS) in proportion to PO(2). During normoxia, a redox mediator, like hydrogen peroxide (H(2)O(2)), maintains voltage-gated O(2)-sensitive K(+) channels (Kv) in an oxidized open state. Hypoxic withdrawal of ROS inhibits Kv channels, thereby depolarizing PASMCs, activating L-type voltage-gated Ca(2+) channels, enhancing Ca(2+) influx and promoting vasoconstriction. The role of O(2)-sensitive K(+) channels is conserved in most specialized O(2)-sensitive tissues, including the ductus arteriosus and carotid body. The unique occurrence of hypoxic vasoconstriction in the pulmonary circulation relates to the colocalization of an O(2)-sensor and O(2)-sensitive Kv channels in resistance PAs. HPV has relevance to human physiology, pathophysiology (high altitude pulmonary edema (HAPE) and PHT) and therapy (single lung anesthesia).
Similar articles
- Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation.
Archer SL, Weir EK, Reeve HL, Michelakis E. Archer SL, et al. Adv Exp Med Biol. 2000;475:219-40. doi: 10.1007/0-306-46825-5_21. Adv Exp Med Biol. 2000. PMID: 10849663 Review. - Hypoxic pulmonary vasoconstriction.
Moudgil R, Michelakis ED, Archer SL. Moudgil R, et al. J Appl Physiol (1985). 2005 Jan;98(1):390-403. doi: 10.1152/japplphysiol.00733.2004. J Appl Physiol (1985). 2005. PMID: 15591309 Review. - Hypoxic Pulmonary Vasoconstriction: An Important Component of the Homeostatic Oxygen Sensing System.
Archer SL, Dunham-Snary KJ, Bentley R, Alizadeh E, Weir EK. Archer SL, et al. Physiol Res. 2024 Nov 29;73(S2):S493-S510. doi: 10.33549/physiolres.935431. Physiol Res. 2024. PMID: 39589299 Free PMC article. Review. - Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
Archer SL, Wu XC, Thébaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry MS, Hashimoto K, Harry G, Michelakis ED. Archer SL, et al. Circ Res. 2004 Aug 6;95(3):308-18. doi: 10.1161/01.RES.0000137173.42723.fb. Epub 2004 Jun 24. Circ Res. 2004. PMID: 15217912 - A mitochondrial redox oxygen sensor in the pulmonary vasculature and ductus arteriosus.
Dunham-Snary KJ, Hong ZG, Xiong PY, Del Paggio JC, Herr JE, Johri AM, Archer SL. Dunham-Snary KJ, et al. Pflugers Arch. 2016 Jan;468(1):43-58. doi: 10.1007/s00424-015-1736-y. Epub 2015 Sep 23. Pflugers Arch. 2016. PMID: 26395471 Free PMC article. Review.
Cited by
- Endothelial and smooth muscle cell ion channels in pulmonary vasoconstriction and vascular remodeling.
Makino A, Firth AL, Yuan JX. Makino A, et al. Compr Physiol. 2011 Jul;1(3):1555-602. doi: 10.1002/cphy.c100023. Compr Physiol. 2011. PMID: 23733654 Free PMC article. Review. - Treatment of the Fluoroquinolone-Associated Disability: The Pathobiochemical Implications.
Michalak K, Sobolewska-Włodarczyk A, Włodarczyk M, Sobolewska J, Woźniak P, Sobolewski B. Michalak K, et al. Oxid Med Cell Longev. 2017;2017:8023935. doi: 10.1155/2017/8023935. Epub 2017 Sep 25. Oxid Med Cell Longev. 2017. PMID: 29147464 Free PMC article. Review. - Carotid body oxygen sensing and adaptation to hypoxia.
López-Barneo J, Macías D, Platero-Luengo A, Ortega-Sáenz P, Pardal R. López-Barneo J, et al. Pflugers Arch. 2016 Jan;468(1):59-70. doi: 10.1007/s00424-015-1734-0. Epub 2015 Sep 16. Pflugers Arch. 2016. PMID: 26373853 Review. - Oxygen sensing, mitochondrial biology and experimental therapeutics for pulmonary hypertension and cancer.
Wu D, Dasgupta A, Read AD, Bentley RET, Motamed M, Chen KH, Al-Qazazi R, Mewburn JD, Dunham-Snary KJ, Alizadeh E, Tian L, Archer SL. Wu D, et al. Free Radic Biol Med. 2021 Jul;170:150-178. doi: 10.1016/j.freeradbiomed.2020.12.452. Epub 2021 Jan 12. Free Radic Biol Med. 2021. PMID: 33450375 Free PMC article. - Photooxidation of Amplex Red to resorufin: implications of exposing the Amplex Red assay to light.
Zhao B, Summers FA, Mason RP. Zhao B, et al. Free Radic Biol Med. 2012 Sep 1;53(5):1080-7. doi: 10.1016/j.freeradbiomed.2012.06.034. Epub 2012 Jul 3. Free Radic Biol Med. 2012. PMID: 22765927 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous