Structures and mechanisms of Nudix hydrolases - PubMed (original) (raw)
Review
. 2005 Jan 1;433(1):129-43.
doi: 10.1016/j.abb.2004.08.017.
Affiliations
- PMID: 15581572
- DOI: 10.1016/j.abb.2004.08.017
Review
Structures and mechanisms of Nudix hydrolases
A S Mildvan et al. Arch Biochem Biophys. 2005.
Abstract
Nudix hydrolases catalyze the hydrolysis of nucleoside diphosphates linked to other moieties, X, and contain the sequence motif or Nudix box, GX(5)EX(7)REUXEEXGU. The mechanisms of Nudix hydrolases are highly diverse in the position on the substrate at which nucleophilic substitution occurs, and in the number of required divalent cations. While most proceed by associative nucleophilic substitutions by water at specific internal phosphorus atoms of a diphosphate or polyphosphate chain, members of the GDP-mannose hydrolase sub-family catalyze dissociative nucleophilic substitutions, by water, at carbon. The site of substitution is likely determined by the positions of the general base and the entering water. The rate accelerations or catalytic powers of Nudix hydrolases range from 10(9)- to 10(12)-fold. The reactions are accelerated 10(3)-10(5)-fold by general base catalysis by a glutamate residue within, or beyond the Nudix box, or by a histidine beyond the Nudix box. Lewis acid catalysis, which contributes 10(3)-10(5)-fold to the rate acceleration, is provided by one, two, or three divalent cations. One divalent cation is coordinated by two or three conserved residues of the Nudix box, the initial glycine and one or two glutamate residues, together with a remote glutamate or glutamine ligand from beyond the Nudix box. Some Nudix enzymes require one (MutT) or two additional divalent cations (Ap(4)AP), to neutralize the charge of the polyphosphate chain, to help orient the attacking hydroxide or oxide nucleophile, and/or to facilitate the departure of the anionic leaving group. Additional catalysis (10-10(3)-fold) is provided by the cationic side chains of lysine and arginine residues and by H-bond donation by tyrosine residues, to orient the general base, or to promote the departure of the leaving group. The overall rate accelerations can be explained by both independent and cooperative effects of these catalytic components.
Similar articles
- Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
Legler PM, Massiah MA, Mildvan AS. Legler PM, et al. Biochemistry. 2002 Sep 3;41(35):10834-48. doi: 10.1021/bi020362e. Biochemistry. 2002. PMID: 12196023 - Structure and mechanism of GDP-mannose glycosyl hydrolase, a Nudix enzyme that cleaves at carbon instead of phosphorus.
Gabelli SB, Bianchet MA, Azurmendi HF, Xia Z, Sarawat V, Mildvan AS, Amzel LM. Gabelli SB, et al. Structure. 2004 Jun;12(6):927-35. doi: 10.1016/j.str.2004.03.028. Structure. 2004. PMID: 15274914 - Mutational, structural, and kinetic evidence for a dissociative mechanism in the GDP-mannose mannosyl hydrolase reaction.
Xia Z, Azurmendi HF, Lairson LL, Withers SG, Gabelli SB, Bianchet MA, Amzel LM, Mildvan AS. Xia Z, et al. Biochemistry. 2005 Jun 28;44(25):8989-97. doi: 10.1021/bi050583v. Biochemistry. 2005. PMID: 15966723 - The plant Nudix hydrolase family.
Kraszewska E. Kraszewska E. Acta Biochim Pol. 2008;55(4):663-71. Epub 2008 Dec 16. Acta Biochim Pol. 2008. PMID: 19081844 Review. - Solution structure and mechanism of the MutT pyrophosphohydrolase.
Mildvan AS, Weber DJ, Abeygunawardana C. Mildvan AS, et al. Adv Enzymol Relat Areas Mol Biol. 1999;73:183-207. doi: 10.1002/9780470123195.ch6. Adv Enzymol Relat Areas Mol Biol. 1999. PMID: 10218109 Review.
Cited by
- Bacillus subtilis RNA deprotection enzyme RppH recognizes guanosine in the second position of its substrates.
Piton J, Larue V, Thillier Y, Dorléans A, Pellegrini O, Li de la Sierra-Gallay I, Vasseur JJ, Debart F, Tisné C, Condon C. Piton J, et al. Proc Natl Acad Sci U S A. 2013 May 28;110(22):8858-63. doi: 10.1073/pnas.1221510110. Epub 2013 Apr 22. Proc Natl Acad Sci U S A. 2013. PMID: 23610407 Free PMC article. - Kinetic and mutational studies of the adenosine diphosphate ribose hydrolase from Mycobacterium tuberculosis.
O'Handley SF, Thirawatananond P, Kang LW, Cunningham JE, Leyva JA, Amzel LM, Gabelli SB. O'Handley SF, et al. J Bioenerg Biomembr. 2016 Dec;48(6):557-567. doi: 10.1007/s10863-016-9681-9. Epub 2016 Sep 28. J Bioenerg Biomembr. 2016. PMID: 27683242 Free PMC article. - Crystallization and preliminary X-ray studies of MutT1 (MSMEG_2390) from Mycobacterium smegmatis.
Arif SM, Patil AG, Varshney U, Vijayan M. Arif SM, et al. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Oct 1;68(Pt 10):1214-6. doi: 10.1107/S1744309112035804. Epub 2012 Sep 26. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012. PMID: 23027750 Free PMC article. - Beyond Chelation: EDTA Tightly Binds Taq DNA Polymerase, MutT and dUTPase and Directly Inhibits dNTPase Activity.
Lopata A, Jójárt B, Surányi ÉV, Takács E, Bezúr L, Leveles I, Bendes ÁÁ, Viskolcz B, Vértessy BG, Tóth J. Lopata A, et al. Biomolecules. 2019 Oct 17;9(10):621. doi: 10.3390/biom9100621. Biomolecules. 2019. PMID: 31627475 Free PMC article. - Insights into the molecular determinants involved in cap recognition by the vaccinia virus D10 decapping enzyme.
Soulière MF, Perreault JP, Bisaillon M. Soulière MF, et al. Nucleic Acids Res. 2010 Nov;38(21):7599-610. doi: 10.1093/nar/gkq628. Epub 2010 Jul 17. Nucleic Acids Res. 2010. PMID: 20639534 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources