Role of synaptic inhibition in spatiotemporal patterning of cortical activity - PubMed (original) (raw)
Review
Role of synaptic inhibition in spatiotemporal patterning of cortical activity
Laurens Bosman et al. Prog Brain Res. 2005.
Abstract
Developmental upregulation of the GABAA receptor alpha1 subunit causes a faster decay of GABAergic inhibitory postsynaptic currents (IPSCs) in the visual cortex around the time of eye opening. In alpha1 deficient mice, a juvenile type of GABAA receptors is retained during maturation. As a result the decay time of the IPSCs is longer in alpha1-/- mice than in WT mice during the whole life span of the mice. Hence they form a valuable mouse model for studies on cellular aspects of neuronal network functioning. Using voltage sensitive dye imaging methods, we monitored the spatiotemporal excitation patterning in visual cortex slices upon local stimulation of the network. We found that in the alpha1-/- mice, the ability of the network to fire synchronously at gamma-frequencies (20-50 Hz) is diminished. This finding indicates that early onset of GABA synapse maturation is required for the normal neuronal network function in the maturating visual cortex.
Similar articles
- GABAA receptor maturation in relation to eye opening in the rat visual cortex.
Heinen K, Bosman LW, Spijker S, van Pelt J, Smit AB, Voorn P, Baker RE, Brussaard AB. Heinen K, et al. Neuroscience. 2004;124(1):161-71. doi: 10.1016/j.neuroscience.2003.11.004. Neuroscience. 2004. PMID: 14960348 - Mice lacking the major adult GABAA receptor subtype have normal number of synapses, but retain juvenile IPSC kinetics until adulthood.
Bosman LW, Heinen K, Spijker S, Brussaard AB. Bosman LW, et al. J Neurophysiol. 2005 Jul;94(1):338-46. doi: 10.1152/jn.00084.2005. Epub 2005 Mar 9. J Neurophysiol. 2005. PMID: 15758057 - GABAergic inhibition shapes frequency adaptation of cortical activity in a frequency-dependent manner.
Heistek TS, Lodder JC, Brussaard AB, Bosman LW, Mansvelder HD. Heistek TS, et al. Brain Res. 2010 Mar 19;1321:31-9. doi: 10.1016/j.brainres.2010.01.047. Epub 2010 Jan 28. Brain Res. 2010. PMID: 20114035 - Developmental patterns and plasticities: the hippocampal model.
Leinekugel X. Leinekugel X. J Physiol Paris. 2003 Jan;97(1):27-37. doi: 10.1016/j.jphysparis.2003.10.004. J Physiol Paris. 2003. PMID: 14706688 Review. - [Age and experience dependence of long-term synaptic modification in visual cortex].
Komatsu Y, Yoshimura Y. Komatsu Y, et al. Tanpakushitsu Kakusan Koso. 2004 Feb;49(3 Suppl):378-83. Tanpakushitsu Kakusan Koso. 2004. PMID: 14976759 Review. Japanese. No abstract available.
Cited by
- No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms.
Corner M, van der Togt C. Corner M, et al. Neurosci Bull. 2012 Feb;28(1):25-38. doi: 10.1007/s12264-012-1062-8. Neurosci Bull. 2012. PMID: 22233887 Free PMC article. Review. - Call it sleep -- what animals without backbones can tell us about the phylogeny of intrinsically generated neuromotor rhythms during early development.
Corner MA. Corner MA. Neurosci Bull. 2013 Jun;29(3):373-80. doi: 10.1007/s12264-013-1313-3. Epub 2013 Mar 8. Neurosci Bull. 2013. PMID: 23471866 Free PMC article. Review. - Occipital GABA levels in older adults and their relationship to visual perceptual suppression.
Pitchaimuthu K, Wu QZ, Carter O, Nguyen BN, Ahn S, Egan GF, McKendrick AM. Pitchaimuthu K, et al. Sci Rep. 2017 Oct 27;7(1):14231. doi: 10.1038/s41598-017-14577-5. Sci Rep. 2017. PMID: 29079815 Free PMC article. - Transcriptional signatures of cellular plasticity in mice lacking the alpha1 subunit of GABAA receptors.
Ponomarev I, Maiya R, Harnett MT, Schafer GL, Ryabinin AE, Blednov YA, Morikawa H, Boehm SL 2nd, Homanics GE, Berman AE, Lodowski KH, Bergeson SE, Harris RA. Ponomarev I, et al. J Neurosci. 2006 May 24;26(21):5673-83. doi: 10.1523/JNEUROSCI.0860-06.2006. J Neurosci. 2006. PMID: 16723524 Free PMC article. - Discovering Microcircuit Secrets With Multi-Spot Imaging and Electrophysiological Recordings: The Example of Cerebellar Network Dynamics.
Tognolina M, Monteverdi A, D'Angelo E. Tognolina M, et al. Front Cell Neurosci. 2022 Mar 18;16:805670. doi: 10.3389/fncel.2022.805670. eCollection 2022. Front Cell Neurosci. 2022. PMID: 35370553 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials