Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia - PubMed (original) (raw)
. 2004 Dec 15;64(24):8816-20.
doi: 10.1158/0008-5472.CAN-04-1923.
J Guillermo Paez, Frank S David, Heike Keilhack, Balazs Halmos, Katsuhiko Naoki, John M Maris, Andrea Richardson, Alberto Bardelli, David J Sugarbaker, William G Richards, Jinyan Du, Luc Girard, John D Minna, Mignon L Loh, David E Fisher, Victor E Velculescu, Bert Vogelstein, Matthew Meyerson, William R Sellers, Benjamin G Neel
Affiliations
- PMID: 15604238
- DOI: 10.1158/0008-5472.CAN-04-1923
Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia
Mohamed Bentires-Alj et al. Cancer Res. 2004.
Abstract
The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts upstream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan syndrome and an increased risk of some malignancies, notably leukemia and neuroblastoma, have been reported, and recent data indicate that somatic PTPN11 mutations occur in children with sporadic juvenile myelomonocytic leukemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia, and acute myelogenous leukemia (AML). Juvenile myelomonocytic leukemia patients without PTPN11 mutations have either homozygotic NF-1 deletion or activating RAS mutations. Given the role of Shp2 in Ras activation and the frequent mutation of RAS in human tumors, these data raise the possibility that PTPN11 mutations play a broader role in cancer. We asked whether PTPN11 mutations occur in other malignancies in which activating RAS mutations occur at low but significant frequency. Sequencing of PTPN11 from 13 different human neoplasms including breast, lung, gastric, and neuroblastoma tumors and adult AML and acute lymphoblastic leukemia revealed 11 missense mutations. Five are known mutations predicted to result in an activated form of Shp2, whereas six are new mutations. Biochemical analysis confirmed that several of the new mutations result in increased Shp2 activity. Our data demonstrate that mutations in PTPN11 occur at low frequency in several human cancers, especially neuroblastoma and AML, and suggest that Shp2 may be a novel target for antineoplastic therapy.
Similar articles
- Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies.
Chen Y, Takita J, Hiwatari M, Igarashi T, Hanada R, Kikuchi A, Hongo T, Taki T, Ogasawara M, Shimada A, Hayashi Y. Chen Y, et al. Genes Chromosomes Cancer. 2006 Jun;45(6):583-91. doi: 10.1002/gcc.20322. Genes Chromosomes Cancer. 2006. PMID: 16518851 - PTPN11 mutations in Noonan syndrome type I: detection of recurrent mutations in exons 3 and 13.
Maheshwari M, Belmont J, Fernbach S, Ho T, Molinari L, Yakub I, Yu F, Combes A, Towbin J, Craigen WJ, Gibbs R. Maheshwari M, et al. Hum Mutat. 2002 Oct;20(4):298-304. doi: 10.1002/humu.10129. Hum Mutat. 2002. PMID: 12325025 - The tyrosine phosphatase Shp2 (PTPN11) in cancer.
Chan G, Kalaitzidis D, Neel BG. Chan G, et al. Cancer Metastasis Rev. 2008 Jun;27(2):179-92. doi: 10.1007/s10555-008-9126-y. Cancer Metastasis Rev. 2008. PMID: 18286234 Review. - Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia.
Tartaglia M, Niemeyer CM, Fragale A, Song X, Buechner J, Jung A, Hählen K, Hasle H, Licht JD, Gelb BD. Tartaglia M, et al. Nat Genet. 2003 Jun;34(2):148-50. doi: 10.1038/ng1156. Nat Genet. 2003. PMID: 12717436 - Noonan syndrome, the Ras-MAPK signalling pathway and short stature.
Binder G. Binder G. Horm Res. 2009 Apr;71 Suppl 2:64-70. doi: 10.1159/000192439. Epub 2009 Apr 29. Horm Res. 2009. PMID: 19407499 Review.
Cited by
- Discovery of TK-642 as a highly potent, selective, orally bioavailable pyrazolopyrazine-based allosteric SHP2 inhibitor.
Tang K, Wang S, Feng S, Yang X, Guo Y, Ren X, Bai L, Yu B, Liu HM, Song Y. Tang K, et al. Acta Pharm Sin B. 2024 Aug;14(8):3624-3642. doi: 10.1016/j.apsb.2024.03.028. Epub 2024 Mar 26. Acta Pharm Sin B. 2024. PMID: 39234614 Free PMC article. - Canine Histiocytic and Hemophagocytic Histiocytic Sarcomas Display KRAS and Extensive PTPN11/SHP2 Mutations and Respond In Vitro to MEK Inhibition by Cobimetinib.
Yang YT, Engleberg AI, Kapoor I, Kitagawa K, Hilburger SA, Thaiwong-Nebelung T, Yuzbasiyan-Gurkan V. Yang YT, et al. Genes (Basel). 2024 Aug 9;15(8):1050. doi: 10.3390/genes15081050. Genes (Basel). 2024. PMID: 39202410 Free PMC article. - Enzyme Is the Name-Adapter Is the Game.
Huber M, Brummer T. Huber M, et al. Cells. 2024 Jul 25;13(15):1249. doi: 10.3390/cells13151249. Cells. 2024. PMID: 39120280 Free PMC article. Review. - The pathogenic T42A mutation in SHP2 rewires the interaction specificity of its N-terminal regulatory domain.
van Vlimmeren AE, Voleti R, Chartier CA, Jiang Z, Karandur D, Humphries PA, Lo WL, Shah NH. van Vlimmeren AE, et al. Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2407159121. doi: 10.1073/pnas.2407159121. Epub 2024 Jul 16. Proc Natl Acad Sci U S A. 2024. PMID: 39012820 - SHP2 as a primordial epigenetic enzyme expunges histone H3 pTyr-54 to amend androgen receptor homeostasis.
Chouhan S, Sridaran D, Weimholt C, Luo J, Li T, Hodgson MC, Santos LN, Le Sommer S, Fang B, Koomen JM, Seeliger M, Qu CK, Yart A, Kontaridis MI, Mahajan K, Mahajan NP. Chouhan S, et al. Nat Commun. 2024 Jul 4;15(1):5629. doi: 10.1038/s41467-024-49978-4. Nat Commun. 2024. PMID: 38965223 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous