Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice - PubMed (original) (raw)
Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice
Kiyotaka Nagaki et al. Mol Biol Evol. 2005 Apr.
Abstract
The centromeric retrotransposon (CR) family in the grass species is one of few Ty3-gypsy groups of retroelements that preferentially transpose into highly specialized chromosomal domains. It has been demonstrated in both rice and maize that CRR (CR of rice) and CRM (CR of maize) elements are intermingled with centromeric satellite DNA and are highly concentrated within cytologically defined centromeres. We collected all of the CRR elements from rice chromosomes 1, 4, 8, and 10 that have been sequenced to high quality. Phylogenetic analysis revealed that the CRR elements are structurally diverged into four subfamilies, including two autonomous subfamilies (CRR1 and CRR2) and two nonautonomous subfamilies (noaCRR1 and noaCRR2). The CRR1/CRR2 elements contain all characteristic protein domains required for retrotransposition. In contrast, the noaCRR elements have different structures, containing only a gag or gag-pro domain or no open reading frames. The CRR and noaCRR elements share substantial sequence similarity in regions required for DNA replication and for recognition by integrase during retrotransposition. These data, coupled with the presence of young noaCRR elements in the rice genome and similar chromosomal distribution patterns between noaCRR1 and CRR1/CRR2 elements, suggest that the noaCRR elements were likely mobilized through the retrotransposition machinery from the autonomous CRR elements. Mechanisms of the targeting specificity of the CRR elements, as well as their role in centromere function, are discussed.
Similar articles
- A lineage-specific centromere retrotransposon in Oryza brachyantha.
Gao D, Gill N, Kim HR, Walling JG, Zhang W, Fan C, Yu Y, Ma J, SanMiguel P, Jiang N, Cheng Z, Wing RA, Jiang J, Jackson SA. Gao D, et al. Plant J. 2009 Dec;60(5):820-31. doi: 10.1111/j.1365-313X.2009.04005.x. Epub 2009 Aug 21. Plant J. 2009. PMID: 19702667 - The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference.
Neumann P, Yan H, Jiang J. Neumann P, et al. Genetics. 2007 Jun;176(2):749-61. doi: 10.1534/genetics.107.071902. Epub 2007 Apr 3. Genetics. 2007. PMID: 17409063 Free PMC article. - Comparative analysis of complete orthologous centromeres from two subspecies of rice reveals rapid variation of centromere organization and structure.
Wu J, Fujisawa M, Tian Z, Yamagata H, Kamiya K, Shibata M, Hosokawa S, Ito Y, Hamada M, Katagiri S, Kurita K, Yamamoto M, Kikuta A, Machita K, Karasawa W, Kanamori H, Namiki N, Mizuno H, Ma J, Sasaki T, Matsumoto T. Wu J, et al. Plant J. 2009 Dec;60(5):805-19. doi: 10.1111/j.1365-313X.2009.04002.x. Epub 2009 Aug 21. Plant J. 2009. PMID: 19702669 - Plant centromere organization: a dynamic structure with conserved functions.
Ma J, Wing RA, Bennetzen JL, Jackson SA. Ma J, et al. Trends Genet. 2007 Mar;23(3):134-9. doi: 10.1016/j.tig.2007.01.004. Epub 2007 Feb 1. Trends Genet. 2007. PMID: 17275131 Review. - A molecular view of plant centromeres.
Jiang J, Birchler JA, Parrott WA, Dawe RK. Jiang J, et al. Trends Plant Sci. 2003 Dec;8(12):570-5. doi: 10.1016/j.tplants.2003.10.011. Trends Plant Sci. 2003. PMID: 14659705 Review.
Cited by
- Genetic and epigenetic effects on centromere establishment.
Ling YH, Lin Z, Yuen KWY. Ling YH, et al. Chromosoma. 2020 Mar;129(1):1-24. doi: 10.1007/s00412-019-00727-3. Epub 2019 Nov 28. Chromosoma. 2020. PMID: 31781852 Review. - Chromatin immunoprecipitation cloning reveals rapid evolutionary patterns of centromeric DNA in Oryza species.
Lee HR, Zhang W, Langdon T, Jin W, Yan H, Cheng Z, Jiang J. Lee HR, et al. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11793-8. doi: 10.1073/pnas.0503863102. Epub 2005 Jul 22. Proc Natl Acad Sci U S A. 2005. PMID: 16040802 Free PMC article. - Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons?
Tian Z, Rizzon C, Du J, Zhu L, Bennetzen JL, Jackson SA, Gaut BS, Ma J. Tian Z, et al. Genome Res. 2009 Dec;19(12):2221-30. doi: 10.1101/gr.083899.108. Epub 2009 Sep 29. Genome Res. 2009. PMID: 19789376 Free PMC article. - The structure, function, and evolution of plant centromeres.
Naish M, Henderson IR. Naish M, et al. Genome Res. 2024 Mar 20;34(2):161-178. doi: 10.1101/gr.278409.123. Genome Res. 2024. PMID: 38485193 Free PMC article. Review. - Nondisjunction in favor of a chromosome: the mechanism of rye B chromosome drive during pollen mitosis.
Banaei-Moghaddam AM, Schubert V, Kumke K, Weiβ O, Klemme S, Nagaki K, Macas J, González-Sánchez M, Heredia V, Gómez-Revilla D, González-García M, Vega JM, Puertas MJ, Houben A. Banaei-Moghaddam AM, et al. Plant Cell. 2012 Oct;24(10):4124-34. doi: 10.1105/tpc.112.105270. Epub 2012 Oct 26. Plant Cell. 2012. PMID: 23104833 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources