Optimizing transport of metabolites through large channels: molecular sieves with and without binding - PubMed (original) (raw)
Optimizing transport of metabolites through large channels: molecular sieves with and without binding
Alexander M Berezhkovskii et al. Biophys J. 2005 Mar.
Abstract
Using a diffusion model of molecules moving through a pore, we rationalize why biological channels have an affinity for the molecules they have evolved to translocate.
Figures
Figure
FIGURE 1
Nonmonotonic behavior of the flux given by Eq. 5 as a function of potential well depth at three different concentrations of translocating molecules and _c_2 = 0.
Similar articles
- Channel-facilitated molecular transport across membranes: attraction, repulsion, and asymmetry.
Kolomeisky AB. Kolomeisky AB. Phys Rev Lett. 2007 Jan 26;98(4):048105. doi: 10.1103/PhysRevLett.98.048105. Epub 2007 Jan 26. Phys Rev Lett. 2007. PMID: 17358819 - Quasi-steady approximation for ion channel currents.
Bentele K, Falcke M. Bentele K, et al. Biophys J. 2007 Oct 15;93(8):2597-608. doi: 10.1529/biophysj.107.104299. Epub 2007 Jun 22. Biophys J. 2007. PMID: 17586567 Free PMC article. - Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels.
Coalson RD, Kurnikova MG. Coalson RD, et al. IEEE Trans Nanobioscience. 2005 Mar;4(1):81-93. doi: 10.1109/tnb.2004.842495. IEEE Trans Nanobioscience. 2005. PMID: 15816174 - Magnesium selective ion channels.
Dalmas O. Dalmas O. Biophys J. 2007 Dec 1;93(11):3729-30. doi: 10.1529/biophysj.107.116533. Epub 2007 Sep 7. Biophys J. 2007. PMID: 17827223 Free PMC article. Review. No abstract available. - Reaction-diffusion models of development with state-dependent chemical diffusion coefficients.
Roussel CJ, Roussel MR. Roussel CJ, et al. Prog Biophys Mol Biol. 2004 Sep;86(1):113-60. doi: 10.1016/j.pbiomolbio.2004.03.001. Prog Biophys Mol Biol. 2004. PMID: 15261527 Review.
Cited by
- Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation.
Danelon C, Nestorovich EM, Winterhalter M, Ceccarelli M, Bezrukov SM. Danelon C, et al. Biophys J. 2006 Mar 1;90(5):1617-27. doi: 10.1529/biophysj.105.075192. Epub 2005 Dec 9. Biophys J. 2006. PMID: 16339889 Free PMC article. - Effects of jamming on nonequilibrium transport times in nanochannels.
Zilman A, Pearson J, Bel G. Zilman A, et al. Phys Rev Lett. 2009 Sep 18;103(12):128103. doi: 10.1103/PhysRevLett.103.128103. Epub 2009 Sep 17. Phys Rev Lett. 2009. PMID: 19792464 Free PMC article. - Functional role for transporter isoforms in optimizing membrane transport.
Berezhkovskii AM, Lizunov VA, Zimmerberg J, Bezrukov SM. Berezhkovskii AM, et al. Biophys J. 2011 Jul 20;101(2):L14-6. doi: 10.1016/j.bpj.2011.06.004. Biophys J. 2011. PMID: 21767474 Free PMC article. - Percolation transition prescribes protein size-specific barrier to passive transport through the nuclear pore complex.
Winogradoff D, Chou HY, Maffeo C, Aksimentiev A. Winogradoff D, et al. Nat Commun. 2022 Sep 1;13(1):5138. doi: 10.1038/s41467-022-32857-1. Nat Commun. 2022. PMID: 36050301 Free PMC article. - Tribological effects on DNA translocation in a nanochannel coated with a self-assembled monolayer.
Luan B, Afzali A, Harrer S, Peng H, Waggoner P, Polonsky S, Stolovitzky G, Martyna G. Luan B, et al. J Phys Chem B. 2010 Dec 30;114(51):17172-6. doi: 10.1021/jp108865q. Epub 2010 Dec 3. J Phys Chem B. 2010. PMID: 21128651 Free PMC article.
References
- Dutzler, R., Y.-F. Wang, P. J. Rizkallah, J. P. Rosenbusch, and T. Schirmer. 1995. Crystal structures of various maltooliosaccharides bound to maltoporin reveal a specific sugar translocation pathway. Structure. 4:127–134. - PubMed
- Bezrukov, S. M., A. M. Berezhkovskii, M. A. Pustovoit, and A. Szabo. 2000. Particle number fluctuations in a membrane channel. J. Chem. Phys. 113:8206–8211.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources