GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2) - PubMed (original) (raw)
GlcP constitutes the major glucose uptake system of Streptomyces coelicolor A3(2)
Gilles P van Wezel et al. Mol Microbiol. 2005 Jan.
Free article
Abstract
We provide a functional and regulatory analysis of glcP, encoding the major glucose transporter of Streptomyces coelicolor A3(2). GlcP, a member of the Major Facilitator Superfamily (MFS) of bacterial and eucaryotic sugar permeases, was found to be encoded twice at two distinct loci, glcP1 and glcP2, located in the central core and in the variable right arm of the chromosome respectively. Heterologous expression of GlcP in Escherichia coli led to the full restoration of glucose fermentation to mutants lacking glucose transport activity. Biochemical analysis revealed an affinity constant in the low-micromolar range and substrate specificity for glucose and 2-deoxyglucose. Deletion of glcP1 but not glcP2 led to a drastic reduction in growth on glucose reflected by the loss of glucose uptake. This correlated with transcriptional analyses, which showed that glcP1 transcription was strongly inducible by glucose, while glcP2 transcripts were barely detectable. In conclusion, GlcP, which is the first glucose permease from high G+C Gram-positive bacteria characterized at the molecular level, represents the major glucose uptake system in S. coelicolor A3(2) that is indispensable for the high growth rate on glucose. It is anticipated that the activity of GlcP is linked to other glucose-mediated phenomena such as carbon catabolite repression, morphogenesis and antibiotic production.
Similar articles
- Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression.
Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, Jankovic I. Parche S, et al. J Bacteriol. 2006 Feb;188(4):1260-5. doi: 10.1128/JB.188.4.1260-1265.2006. J Bacteriol. 2006. PMID: 16452407 Free PMC article. - A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in streptomyces coelicolor A3(2).
van Wezel GP, König M, Mahr K, Nothaft H, Thomae AW, Bibb M, Titgemeyer F. van Wezel GP, et al. J Mol Microbiol Biotechnol. 2007;12(1-2):67-74. doi: 10.1159/000096461. J Mol Microbiol Biotechnol. 2007. PMID: 17183213 - Identification and characterization of uptake systems for glucose and fructose in Rhodococcus jostii RHA1.
Araki N, Suzuki T, Miyauchi K, Kasai D, Masai E, Fukuda M. Araki N, et al. J Mol Microbiol Biotechnol. 2011;20(3):125-36. doi: 10.1159/000324330. Epub 2011 Apr 2. J Mol Microbiol Biotechnol. 2011. PMID: 21464575 - The enigmatic lack of glucose utilization in Streptomyces clavuligerus is due to inefficient expression of the glucose permease gene.
Pérez-Redondo R, Santamarta I, Bovenberg R, Martín JF, Liras P. Pérez-Redondo R, et al. Microbiology (Reading). 2010 May;156(Pt 5):1527-1537. doi: 10.1099/mic.0.035840-0. Epub 2010 Jan 28. Microbiology (Reading). 2010. PMID: 20110297 - The mechanisms of carbon catabolite repression in bacteria.
Deutscher J. Deutscher J. Curr Opin Microbiol. 2008 Apr;11(2):87-93. doi: 10.1016/j.mib.2008.02.007. Epub 2008 Mar 21. Curr Opin Microbiol. 2008. PMID: 18359269 Review.
Cited by
- Lactose-over-glucose preference in Bifidobacterium longum NCC2705: glcP, encoding a glucose transporter, is subject to lactose repression.
Parche S, Beleut M, Rezzonico E, Jacobs D, Arigoni F, Titgemeyer F, Jankovic I. Parche S, et al. J Bacteriol. 2006 Feb;188(4):1260-5. doi: 10.1128/JB.188.4.1260-1265.2006. J Bacteriol. 2006. PMID: 16452407 Free PMC article. - Phosphotransferase system-independent glucose utilization in corynebacterium glutamicum by inositol permeases and glucokinases.
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Lindner SN, et al. Appl Environ Microbiol. 2011 Jun;77(11):3571-81. doi: 10.1128/AEM.02713-10. Epub 2011 Apr 8. Appl Environ Microbiol. 2011. PMID: 21478323 Free PMC article. - Dissecting the role of the two Streptomyces peucetius var. caesius glucokinases in the sensitivity to carbon catabolite repression.
Diana RM, Monserrat MR, Alba RR, Beatriz RV, Romina RS, Sergio SE. Diana RM, et al. J Ind Microbiol Biotechnol. 2021 Dec 23;48(9-10):kuab047. doi: 10.1093/jimb/kuab047. J Ind Microbiol Biotechnol. 2021. PMID: 34383077 Free PMC article. - Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production.
Świątek MA, Tenconi E, Rigali S, van Wezel GP. Świątek MA, et al. J Bacteriol. 2012 Mar;194(5):1136-44. doi: 10.1128/JB.06370-11. Epub 2011 Dec 22. J Bacteriol. 2012. PMID: 22194457 Free PMC article. - Utilization of carbon catabolite repression for efficiently biotransformation of anthraquinone O-glucuronides by Streptomyces coeruleorubidus DM.
Tao C, Wang Q, Ji J, Zhou Z, Yue B, Zhang R, Jiang S, Yuan T. Tao C, et al. Front Microbiol. 2024 Apr 16;15:1393073. doi: 10.3389/fmicb.2024.1393073. eCollection 2024. Front Microbiol. 2024. PMID: 38690368 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases