Transcriptional regulation and the role of diverse coactivators in animal cells - PubMed (original) (raw)
Review
. 2005 Feb 7;579(4):909-15.
doi: 10.1016/j.febslet.2004.12.007.
Affiliations
- PMID: 15680973
- DOI: 10.1016/j.febslet.2004.12.007
Free article
Review
Transcriptional regulation and the role of diverse coactivators in animal cells
Robert G Roeder. FEBS Lett. 2005.
Free article
Abstract
Transcriptional regulation in eukaryotes involves structurally and functionally distinct nuclear RNA polymerases, corresponding general initiation factors, gene-specific (DNA-binding) regulatory factors, and a variety of coregulatory factors that act either through chromatin modifications (e.g. histone acetyltransferases and methyltransferases) or more directly (e.g. Mediator) to facilitate formation and function of the preinitiation complex. Biochemical studies with purified factors and DNA versus recombinant chromatin templates have provided insights into the nature and mechanism of action of these factors, including pathways for their sequential function in chromatin remodeling and preinitiation complex formation/function (transcription) steps and a possible role in facilitating the transition between these steps.
Similar articles
- Role of protein methylation in chromatin remodeling and transcriptional regulation.
Stallcup MR. Stallcup MR. Oncogene. 2001 May 28;20(24):3014-20. doi: 10.1038/sj.onc.1204325. Oncogene. 2001. PMID: 11420716 Review. - The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression.
Zhang Y, Sif S, DeWille J. Zhang Y, et al. J Cell Biochem. 2007 Dec 1;102(5):1256-70. doi: 10.1002/jcb.21356. J Cell Biochem. 2007. PMID: 17471507 - Biological control through regulated transcriptional coactivators.
Spiegelman BM, Heinrich R. Spiegelman BM, et al. Cell. 2004 Oct 15;119(2):157-67. doi: 10.1016/j.cell.2004.09.037. Cell. 2004. PMID: 15479634 Review. - Epigenetic control of ovarian function: the emerging role of histone modifications.
LaVoie HA. LaVoie HA. Mol Cell Endocrinol. 2005 Nov 24;243(1-2):12-8. doi: 10.1016/j.mce.2005.09.005. Epub 2005 Oct 10. Mol Cell Endocrinol. 2005. PMID: 16219412 Review.
Cited by
- Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans.
Adelman K, Lis JT. Adelman K, et al. Nat Rev Genet. 2012 Oct;13(10):720-31. doi: 10.1038/nrg3293. Nat Rev Genet. 2012. PMID: 22986266 Free PMC article. Review. - Walleye dermal sarcoma virus retroviral cyclin directly contacts TAF9.
Rovnak J, Quackenbush SL. Rovnak J, et al. J Virol. 2006 Dec;80(24):12041-8. doi: 10.1128/JVI.01425-06. Epub 2006 Oct 11. J Virol. 2006. PMID: 17035330 Free PMC article. - TOX4 facilitates promoter-proximal pausing and C-terminal domain dephosphorylation of RNA polymerase II in human cells.
Liu Z, Wu A, Wu Z, Wang T, Pan Y, Li B, Zhang X, Yu M. Liu Z, et al. Commun Biol. 2022 Apr 1;5(1):300. doi: 10.1038/s42003-022-03214-1. Commun Biol. 2022. PMID: 35365735 Free PMC article. - Norepinephrine upregulates the expression of tyrosine hydroxylase and protects dopaminegic neurons against 6-hydrodopamine toxicity.
Zhu MY, Raza MU, Zhan Y, Fan Y. Zhu MY, et al. Neurochem Int. 2019 Dec;131:104549. doi: 10.1016/j.neuint.2019.104549. Epub 2019 Sep 17. Neurochem Int. 2019. PMID: 31539561 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources