The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis - PubMed (original) (raw)
. 2005 Feb 15;19(4):419-24.
doi: 10.1101/gad.1278205. Epub 2005 Jan 28.
Affiliations
- PMID: 15681611
- PMCID: PMC548941
- DOI: 10.1101/gad.1278205
The Drosophila ortholog of vertebrate TRPA1 regulates thermotaxis
Mark Rosenzweig et al. Genes Dev. 2005.
Abstract
Thermotaxis is important for animal survival, but the molecular identities of temperature sensors controlling this behavior have not been determined. We demonstrate dTRPA1, a heat-activated Transient Receptor Potential (TRP) family ion channel, is essential for thermotaxis in Drosophila. dTrpA1 knockdown eliminates avoidance of elevated temperatures along a thermal gradient. We observe dTRPA1 expression in cells without previously ascribed roles in thermosensation and implicate dTRPA1-expressing neurons in mediating thermotaxis. Our data suggest that thermotaxis relies upon neurons and molecules distinct from those required for high-temperature nociception. We propose dTRPA1 may control thermotaxis by sensing environmental temperature.
Figures
Figure 1.
Thermal preference assay. (A) Larvae are placed in the middle of the thermal gradient on an agarose-covered plate, within the release zone. Agar surface temperatures are as indicated. (B) Larval behavior on gradient quantified by an avoidance index (AI) (Liu et al. 2003) as indicated. Graph depicts behavior of uninjected wild-type (elav-Gal4;UAS-mCD8:GFP) late-first instar/early-second instar larvae (n = 9 assays). (C) Still images from thermal preference assay of uninjected wild-type larvae. Red dotted lines demarcate the release zone, with heated zone at left and unheated zone at right. In all figures, data are mean ± SEM. More than 39 larvae/assay.
Figure 2.
dTrpA1 is required for thermosensory behavior. (A) RNAi strategy (methods). GFP-negative (asterisk), but not GFP-positive (circles), RNAi animals were retained for analysis. (B) Late-first/early-second instar behavior. Uninjected (n = 9 assays); TrpVs:dsRNA, injected with Gal4, Inactive, and Nanchung dsRNAs (Gal4 + Inactive + Nanchung) (n = 4); TrpM:dsRNA:Gal4 + CG30078 (n = 4); TrpAs:dsRNA:Gal4 + dTrpA1 + Painless + CG17142 + CG31284 (n = 6). (C) Preference assay (orientation as in Fig. 1C). (D) As in B except dTrpA1(RNAi)region 1: Gal4 + dTrpA1(region 1) (n = 7). dTrpA1(RNAi)region 2:Gal4 + dTrpA1(region 2) (n = 4); TrpAs-dTrpA1:dsRNA:Gal4 + Painless + CG17142 + CG31284 (n = 4); painless1 (n = 5); painless3 (n = 4); atonal(RNAi) (n = 4). (E) Third instar behavior. Uninjected (n = 9); _dTrpA1(RNAi)_region 1 (n = 13); painless1 (n = 7); painless3 (n = 4); md-Gal4:UAS-TeTxLC (n = 12). (**) p < 0.0001 (versus uninjected). Slight md-Gal4:UAS-TeTxLC effect was not statistically significant (p = 0.09, 2 min; p = 0.27, 5 min) and may reflect their noted uncoordination (Tracey et al. 2003). Nineteen to 75 larvae/assay.
Figure 3.
dTrpA1(RNAi) animals respond to other stimuli. (A) n-Octyl acetate avoidance of late-first/early-second instar elav-Gal4;UAS-mCD8:GFP larvae, uninjected, or dTrpA1(RNAi) (region 1) (n = 6 assays for each). Odor avoidance = [(number of larvae in no odorant zone) – (number of larvae in odorant zone)]/[(number of larvae in no odorant zone) + (number of larvae in odorant zone)]. (B) Response to contact with ∼55°C probe of third instar uninjected and dTrpA1(RNAi) larvae. (C) Time between probe contact and initiation of curling. Uninjected (n = 41 larvae); _dTrpA1(RNAi)_region 1 (n = 24); md-Gal4 (n = 23); UAS-TeTxLC (n = 30); md-Gal4:UAS-TeTxLC (n = 23). Most larvae not responding within 3 sec never exhibited detectable curling.
Figure 4.
dTRPA1 expression. (A) dTRPA1 expression in anterior (arrowhead) and posterior (bracket) groups of neurons within the brain and in neuroendocrine cells of corpus cardiacum (asterisk). (B) Posterior group of dTRPA1-expressing neurons. (C) dTrpA1(RNAi) animals lack dTRPA1 staining. Asterisk denotes corpus cardiacum. (D_–_F) dTrpA-Gal4:UAS-mCD8:GFP (green) expression. dTrpA1-Gal4 drives GFP expression in dTRPA1-expressing (purple) neurons and 100–150 additional cells within the brain. (E) GFP. (F) Anti-dTRPA1. (G) Thermal preference behavior. Wild type (n = 9 assays); UAS-TeTxLC (n = 8); dTrpA1-Gal4(n = 9); dTrpA1-Gal4:UAS-InactiveTeTxLC (n = 6); UAS-Hid (n = 6); dTrpA1-Gal4:UAS-TeTxLC (n = 10); dTrpA1-Gal4:UAS-Hid (n = 10). (*) p < 0.005. (H) Response to ∼55°C probe contact. dTrpA1-Gal4:UAS-TeTxLC (n = 19); dTrpA1-Gal4:UAS-Hid (n = 20).
Comment in
- Take a TRP to beat the heat.
Caterina MJ, Montell C. Caterina MJ, et al. Genes Dev. 2005 Feb 15;19(4):415-8. doi: 10.1101/gad.1294905. Genes Dev. 2005. PMID: 15713838 No abstract available.
Similar articles
- [Molecular mechanisms underlying thermosensation in mammals].
Sokabe T, Tominaga M. Sokabe T, et al. Brain Nerve. 2009 Jul;61(7):867-73. Brain Nerve. 2009. PMID: 19618865 Review. Japanese. - Thermosensory and nonthermosensory isoforms of Drosophila melanogaster TRPA1 reveal heat-sensor domains of a thermoTRP Channel.
Zhong L, Bellemer A, Yan H, Ken H, Jessica R, Hwang RY, Pitt GS, Tracey WD. Zhong L, et al. Cell Rep. 2012 Jan 26;1(1):43-55. doi: 10.1016/j.celrep.2011.11.002. Cell Rep. 2012. PMID: 22347718 Free PMC article. - Distinct TRP channels are required for warm and cool avoidance in Drosophila melanogaster.
Rosenzweig M, Kang K, Garrity PA. Rosenzweig M, et al. Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14668-73. doi: 10.1073/pnas.0805041105. Epub 2008 Sep 11. Proc Natl Acad Sci U S A. 2008. PMID: 18787131 Free PMC article. - ThermoTRP channels as modular proteins with allosteric gating.
Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G. Latorre R, et al. Cell Calcium. 2007 Oct-Nov;42(4-5):427-38. doi: 10.1016/j.ceca.2007.04.004. Epub 2007 May 17. Cell Calcium. 2007. PMID: 17499848 Review. - Synaptic thermoprotection in a desert-dwelling Drosophila species.
Newman AE, Xiao C, Robertson RM. Newman AE, et al. J Neurobiol. 2005 Aug;64(2):170-80. doi: 10.1002/neu.20132. J Neurobiol. 2005. PMID: 15818554
Cited by
- Appetitive associative olfactory learning in Drosophila larvae.
Apostolopoulou AA, Widmann A, Rohwedder A, Pfitzenmaier JE, Thum AS. Apostolopoulou AA, et al. J Vis Exp. 2013 Feb 18;(72):4334. doi: 10.3791/4334. J Vis Exp. 2013. PMID: 23438816 Free PMC article. - Motor neuron activity enhances the proteomic stress caused by autophagy defects in the target muscle.
Srivastav S, van der Graaf K, Jonnalagadda PC, Thawani M, McNew JA, Stern M. Srivastav S, et al. PLoS One. 2024 Jan 2;19(1):e0291477. doi: 10.1371/journal.pone.0291477. eCollection 2024. PLoS One. 2024. PMID: 38166124 Free PMC article. - TRPA1 channels in the vasculature.
Earley S. Earley S. Br J Pharmacol. 2012 Sep;167(1):13-22. doi: 10.1111/j.1476-5381.2012.02018.x. Br J Pharmacol. 2012. PMID: 22563804 Free PMC article. Review. - Transient receptor potential ankyrin 1 promoter methylation and peripheral pain sensitivity in Crohn's disease.
Gombert S, Rhein M, Winterpacht A, Münster T, Hillemacher T, Leffler A, Frieling H. Gombert S, et al. Clin Epigenetics. 2019 Dec 31;12(1):1. doi: 10.1186/s13148-019-0796-9. Clin Epigenetics. 2019. PMID: 31892361 Free PMC article. - Nociceptive neurons protect Drosophila larvae from parasitoid wasps.
Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F, Deisseroth K, Tracey WD. Hwang RY, et al. Curr Biol. 2007 Dec 18;17(24):2105-2116. doi: 10.1016/j.cub.2007.11.029. Epub 2007 Nov 29. Curr Biol. 2007. PMID: 18060782 Free PMC article.
References
- Boulant J.A. 2000. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31(Suppl 5): S157–S161. - PubMed
- Brand A.H. and Perrimon, N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415. - PubMed
- Caterina M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I., and Julius, D. 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288: 306–313. - PubMed
- Corey D.P., Garcia-Anoveros, J., Holt, J.R., Kwan, K.Y., Lin, S.Y., Vollrath, M.A., Amalfitano, A., Cheung, E.L., Derfler, B.H., Duggan, A., et al. 2004. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432: 723–730 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases