Interactions of cocaine with primary and secondary recognition sites on muscarinic receptors - PubMed (original) (raw)

Affiliations

Interactions of cocaine with primary and secondary recognition sites on muscarinic receptors

D D Flynn et al. Mol Pharmacol. 1992 Apr.

Abstract

Several lines of evidence have suggested that muscarinic receptors may possess more than one ligand binding site. In this study, the interactions of cocaine with primary and secondary (allosteric) sites on muscarinic receptors in membrane homogenates from post-mortem human brainstem were examined. (-)-Cocaine inhibited the binding of the tritiated muscarinic antagonists N-methylscopolamine (NMS) and pirenzepine to an apparent single class of sites, with Ki values of 200-300 microM. The binding of the muscarinic agonist [3H]oxotremorine-M was inhibited with a similar Ki value (200 microM). (+)-Cocaine, although not the naturally occurring stereoisomer, was 10-20-fold more potent than (-)-cocaine in competing for binding to the primary muscarinic recognition site. The binding of cocaine was unaffected by guanine nucleotides or N-ethylmaleimide, consistent with its purported action as a competitive antagonist. Cocaine was not selective for muscarinic receptor subtypes. Rosenthal analysis of the [3H]NMS saturation binding data in the presence of increasing concentrations of either (-)-cocaine or (+)-cocaine indicated that both isomers produced an apparent competitive-like reduction in the [3H]NMS affinity. Schild regression analysis of the saturation binding data resulted in curvilinear plots suggestive of cooperative or allosteric interactions of (-)-cocaine with the [3H]NMS-labeled receptors. The effects of (-)-cocaine on the kinetics of [3H]NMS binding were consistent with an allosteric interaction with the receptor. Increasing concentrations of cocaine markedly slowed the rate of [3H]NMS dissociation from the primary recognition site. The allosteric modulation of [3H] NMS binding by (-)-cocaine was abolished with increasing ionic strength. Taken together, these data demonstrate that (-)-cocaine interacts with primary and allosteric recognition sites on muscarinic receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances