Marriage of resistance and conduit arteries breeds critical limb ischemia - PubMed (original) (raw)
Review
. 2005 Mar;288(3):H1044-50.
doi: 10.1152/ajpheart.00773.2004.
Affiliations
- PMID: 15706041
- DOI: 10.1152/ajpheart.00773.2004
Free article
Review
Marriage of resistance and conduit arteries breeds critical limb ischemia
Paul Coats et al. Am J Physiol Heart Circ Physiol. 2005 Mar.
Free article
Abstract
Atherosclerosis in a major leg artery leads to impaired blood supply, which normally progresses to critical limb ischemia. Atherosclerosis produces substantial alterations of structure and endothelial function in the large conduit arteries. Pressure unloading and ischemia in the distal vasculature bring about alterations in microvascular function. Resistance arteries undergo significant wall thinning and changes in their contractile regulation. Optimization of large artery dimensions by the small arteries through flow-mediated vasodilation is impaired. Angiogenesis is stimulated, which can result in the formation of major collateral feeder vessels in addition to small nutritive blood vessels. However, angiogenesis can also contribute to instability of atherosclerotic plaques, which ultimately leads to further deterioration in blood supply. Surgical bypass grafting to restore blood supply to the distal leg generates a sudden increase of pressure in the weakened resistance vasculature, leading to uncontrolled changes in capillary hydrostatic pressure, extravasation of fluid, and tissue edema. This review aims to highlight the importance of the resistance vasculature in critical limb ischemia and the interdependence of pathophysiological changes in the large conduit and small resistance arteries. The major unresolved question is why the physiological mechanisms that regulate vascular structure and function ultimately break down, leading to circulatory failure within the distal limb.
Similar articles
- Antegrade flow and peripheral resistance determine the level of endogenous arteriogenesis in patients with superficial femoral artery occlusion.
Vajanto I, Korpisalo P, Karjalainen J, Hakala T, Mäkinen K, Ylä-Herttuala S. Vajanto I, et al. Eur J Clin Invest. 2009 Dec;39(12):1048-54. doi: 10.1111/j.1365-2362.2009.02208.x. Epub 2009 Oct 6. Eur J Clin Invest. 2009. PMID: 19807785 - Regulation of coronary blood flow during exercise.
Duncker DJ, Bache RJ. Duncker DJ, et al. Physiol Rev. 2008 Jul;88(3):1009-86. doi: 10.1152/physrev.00045.2006. Physiol Rev. 2008. PMID: 18626066 Review. - Altered small artery morphology and reactivity in critical limb ischaemia.
Hillier C, Sayers RD, Watt PA, Naylor R, Bell PR, Thurston H. Hillier C, et al. Clin Sci (Lond). 1999 Feb;96(2):155-63. Clin Sci (Lond). 1999. PMID: 9918895 - Blood pressure regulation VIII: resistance vessel tone and implications for a pro-atherogenic conduit artery endothelial cell phenotype.
Padilla J, Jenkins NT, Laughlin MH, Fadel PJ. Padilla J, et al. Eur J Appl Physiol. 2014 Mar;114(3):531-44. doi: 10.1007/s00421-013-2684-x. Epub 2013 Jul 17. Eur J Appl Physiol. 2014. PMID: 23860841 Free PMC article. Review. - Increased alpha(1)- and alpha(2)-adrenoceptor-mediated contractile responses of human skeletal muscle resistance arteries in chronic limb ischemia.
Jarajapu YP, Coats P, McGrath JC, MacDonald A, Hillier C. Jarajapu YP, et al. Cardiovasc Res. 2001 Jan;49(1):218-25. doi: 10.1016/s0008-6363(00)00224-8. Cardiovasc Res. 2001. PMID: 11121814
Cited by
- Suppressed hindlimb perfusion in Rac2-/- and Nox2-/- mice does not result from impaired collateral growth.
Distasi MR, Case J, Ziegler MA, Dinauer MC, Yoder MC, Haneline LS, Dalsing MC, Miller SJ, Labarrere CA, Murphy MP, Ingram DA, Unthank JL. Distasi MR, et al. Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H877-86. doi: 10.1152/ajpheart.00772.2008. Epub 2009 Jan 16. Am J Physiol Heart Circ Physiol. 2009. PMID: 19151256 Free PMC article. - Strategies to Overcome the Barrier of Ischemic Microenvironment in Cell Therapy of Cardiovascular Disease.
Berndt R, Albrecht M, Rusch R. Berndt R, et al. Int J Mol Sci. 2021 Feb 25;22(5):2312. doi: 10.3390/ijms22052312. Int J Mol Sci. 2021. PMID: 33669136 Free PMC article. Review. - Peripheral arterial disease: A small and large vessel problem.
Bethel M, Annex BH. Bethel M, et al. Am Heart J Plus. 2023 Mar 23;28:100291. doi: 10.1016/j.ahjo.2023.100291. eCollection 2023 Apr. Am Heart J Plus. 2023. PMID: 38511071 Free PMC article. Review. - Novel assessment tool based on laser speckle contrast imaging to diagnose severe ischemia in the lower limb for patients with peripheral arterial disease.
Katsui S, Inoue Y, Igari K, Toyofuku T, Kudo T, Uetake H. Katsui S, et al. Lasers Surg Med. 2017 Sep;49(7):645-651. doi: 10.1002/lsm.22669. Epub 2017 Apr 2. Lasers Surg Med. 2017. PMID: 28370223 Free PMC article. Clinical Trial. - Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem Cells for Cardiovascular Disease.
Yun CW, Lee SH. Yun CW, et al. Int J Mol Sci. 2019 Feb 24;20(4):982. doi: 10.3390/ijms20040982. Int J Mol Sci. 2019. PMID: 30813471 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources