Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene - PubMed (original) (raw)

Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene

C Maier et al. Br J Cancer. 2005.

Abstract

To date, germline mutations have been found in three candidate genes for hereditary prostate cancer: ELAC2 at 17p11, RNASEL at 1q25 and MSR1 at 8p22. RNASEL, encoding the 2',5'-oligoadenylate-dependant RNase L, seems to have rare mutations in different ethnicities, such as M1I in Afro-Americans, E265X in men of European descent and 471delAAAG in Ashkenazi Jews. In order to evaluate the relevance of RNASEL in the German population, we sequenced its open reading frame to determine the spectrum and frequency of germline mutations. The screen included 303 affected men from 136 Caucasian families, of which 45 met the criteria for hereditary prostate cancer. Variants were analysed using a family-based association test, and genotyped in an additional 227 sporadic prostate cancer patients and 207 controls. We identified only two sib pairs (1.4% of our families) cosegregating conspicuous RNASEL variants with prostate cancer: the nonsense mutation E265X, and a new amino-acid substitution (R400P) of unknown functional relevance. Both alleles were also found at low frequencies (1.4 and 0.5%, respectively) in controls. No significant association of polymorphisms (I97L, R462Q and D541E) was observed, neither in case-control analyses nor by family-based association tests. In contrast to previous reports, our study does not suggest that common variants (i.e. R462Q) modify disease risk. Our results are not consistent with a high penetrance of deleterious RNASEL mutations. Due to the low frequency of germline mutations present in our sample, RNASEL does not have a significant impact on prostate cancer susceptibility in the German population.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Pedigrees with conspicuous RNASEL alleles. Carriers of variants are indicated by one filled circle. Two open circles represent wild-type genotypes.

References

    1. Carpten J, Nupponen N, Isaacs S, Sood R, Robbins C, Xu J, Faruque M, Moses T, Ewing C, Gillanders E, Hu P, Bujnovszky P, Makalowska I, Baffoe-Bonnie A, Faith D, Smith J, Stephan D, Wiley K, Brownstein M, Gildea D, Kelly B, Jenkins R, Hostetter G, Matikainen M, Schleutker J, Klinger K, Connors T, Xiang Y, Wang Z, De Marzo A, Papadopoulos N, Kallioniemi OP, Burk R, Meyers D, Gronberg H, Meltzer P, Silverman R, Bailey-Wilson J, Walsh P, Isaacs W, Trent J (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30: 181–184 - PubMed
    1. Carter BS, Bova GS, Beaty TH, Steinberg GD, Childs B, Isaacs WB, Walsh PC (1993) Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150: 797–802 - PubMed
    1. Carter HB (2004) Prostate cancers in men with low PSA levels – must we find them? N Engl J Med 350: 2292–2294 - PMC - PubMed
    1. Casey G, Neville PJ, Plummer SJ, Xiang Y, Krumroy LM, Klein EA, Catalona WJ, Nupponen N, Carpten JD, Trent JM, Silverman RH, Witte JS (2002) RNASEL Arg462Gln variant is implicated in up to 13% of prostate cancer cases. Nat Genet 32: 581–583 - PubMed
    1. Chen H, Griffin AR, Wu YQ, Tomsho LP, Zuhlke KA, Lange EM, Gruber SB, Cooney KA (2003) RNASEL mutations in hereditary prostate cancer. J Med Genet 40: e21. - PMC - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources