Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer - PubMed (original) (raw)
. 2005 Mar 24;24(13):2166-74.
doi: 10.1038/sj.onc.1208371.
Affiliations
- PMID: 15735753
- DOI: 10.1038/sj.onc.1208371
Epigenetic inactivation of the human sprouty2 (hSPRY2) homologue in prostate cancer
Arthur B McKie et al. Oncogene. 2005.
Abstract
Abnormal signalling events mediated by receptor tyrosine kinases (RTKs) contribute to human carcinogenesis. Sprouty2 (Spry2) is a key antagonistic regulator of RTK signalling and suppression of its expression or function may facilitate proliferation and angiogenesis. Using prostate cancer (CaP) as a model, we investigated the significance of Spry2 in human malignancy. We observed downregulated Spry2 expression in invasive CaP cell lines and high-grade clinical CaP (compared to benign prostatic hyperplasia (BPH) and well-differentiated tumours, P=0.041). A large CpG island is associated with hSPRY2, and extensive hypermethylation of this CpG island was observed in 76-82% of high-grade CaP, while control BPH tissues were predominantly unmethylated (P=0.0005). Furthermore, suppressed Spry2 expression correlated with methylation of the CpG region in clinical samples (P=0.004) and treatment with 5-aza-2'-deoxycytidine reactivated Spry2 expression in LNCaP and PC-3M cells. hSPRY2 maps to the long arm of chromosome 13 (13q31.1), where loss of heterozygosity (LOH) has been reported. We found no evidence of mutation; however, we demonstrated 27-40% LOH using flanking markers to hSPRY2. Hence, while biallelic epigenetic inactivation of hSPRY2 represents the main genetic event in prostate carcinogenesis, the observed 27-40% LOH presents evidence of hemizygous deletion with the remaining allele hypermethylated. We therefore propose hSPRY2 as a potential tumour suppressor locus in CaP.
Similar articles
- Inactivation of the von Hippel-Lindau (VHL) tumour suppressor gene and allelic losses at chromosome arm 3p in primary renal cell carcinoma: evidence for a VHL-independent pathway in clear cell renal tumourigenesis.
Clifford SC, Prowse AH, Affara NA, Buys CH, Maher ER. Clifford SC, et al. Genes Chromosomes Cancer. 1998 Jul;22(3):200-9. doi: 10.1002/(sici)1098-2264(199807)22:3<200::aid-gcc5>3.0.co;2-#. Genes Chromosomes Cancer. 1998. PMID: 9624531 - Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer.
Sørensen KD, Borre M, Ørntoft TF, Dyrskjøt L, Tørring N. Sørensen KD, et al. Int J Cancer. 2008 Feb 1;122(3):509-19. doi: 10.1002/ijc.23136. Int J Cancer. 2008. PMID: 17943724 - DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation.
Kelavkar UP, Harya NS, Hutzley J, Bacich DJ, Monzon FA, Chandran U, Dhir R, O'Keefe DS. Kelavkar UP, et al. Prostaglandins Other Lipid Mediat. 2007 Jan;82(1-4):185-97. doi: 10.1016/j.prostaglandins.2006.05.015. Epub 2006 Jul 11. Prostaglandins Other Lipid Mediat. 2007. PMID: 17164146 - Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma.
Hogg RP, Honorio S, Martinez A, Agathanggelou A, Dallol A, Fullwood P, Weichselbaum R, Kuo MJ, Maher ER, Latif F. Hogg RP, et al. Eur J Cancer. 2002 Aug;38(12):1585-92. doi: 10.1016/s0959-8049(01)00422-1. Eur J Cancer. 2002. PMID: 12142046 - Involvement of the multiple tumor suppressor genes and 12-lipoxygenase in human prostate cancer. Therapeutic implications.
Gao X, Porter AT, Honn KV. Gao X, et al. Adv Exp Med Biol. 1997;407:41-53. doi: 10.1007/978-1-4899-1813-0_7. Adv Exp Med Biol. 1997. PMID: 9321930 Review.
Cited by
- Sprouty2 association with B-Raf is regulated by phosphorylation and kinase conformation.
Brady SC, Coleman ML, Munro J, Feller SM, Morrice NA, Olson MF. Brady SC, et al. Cancer Res. 2009 Sep 1;69(17):6773-81. doi: 10.1158/0008-5472.CAN-08-4447. Epub 2009 Aug 18. Cancer Res. 2009. PMID: 19690147 Free PMC article. - Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells.
Chen H, Kluz T, Zhang R, Costa M. Chen H, et al. Carcinogenesis. 2010 Dec;31(12):2136-44. doi: 10.1093/carcin/bgq197. Epub 2010 Sep 29. Carcinogenesis. 2010. PMID: 20881000 Free PMC article. - Hypoxia inducible factors regulate the transcription of the sprouty2 gene and expression of the sprouty2 protein.
Gao X, Hicks KC, Neumann P, Patel TB. Gao X, et al. PLoS One. 2017 Feb 14;12(2):e0171616. doi: 10.1371/journal.pone.0171616. eCollection 2017. PLoS One. 2017. PMID: 28196140 Free PMC article. - miR-27a in serum acts as biomarker for prostate cancer detection and promotes cell proliferation by targeting Sprouty2.
Gao W, Hong Z, Huang H, Zhu A, Lin S, Cheng C, Zhang X, Zou G, Shi Z. Gao W, et al. Oncol Lett. 2018 Oct;16(4):5291-5298. doi: 10.3892/ol.2018.9274. Epub 2018 Aug 7. Oncol Lett. 2018. PMID: 30250598 Free PMC article. - Mechanistic and prognostic significance of aberrant methylation in the molecular pathogenesis of human hepatocellular carcinoma.
Calvisi DF, Ladu S, Gorden A, Farina M, Lee JS, Conner EA, Schroeder I, Factor VM, Thorgeirsson SS. Calvisi DF, et al. J Clin Invest. 2007 Sep;117(9):2713-22. doi: 10.1172/JCI31457. J Clin Invest. 2007. PMID: 17717605 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous