Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa - PubMed (original) (raw)

doi: 10.1016/j.devcel.2004.12.005.

Ayae Kinoshita, Shuichi Yamada, Hiromitsu Tanaka, Ai Tanigaki, Ayumi Kitano, Motohito Goto, Kazutoshi Okubo, Hiroyuki Nishiyama, Osamu Ogawa, Chiaki Takahashi, Shigeyoshi Itohara, Yoshitake Nishimune, Makoto Noda, Makoto Kinoshita

Affiliations

Free article

Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa

Masafumi Ihara et al. Dev Cell. 2005 Mar.

Free article

Abstract

Septins are polymerizing GTP binding proteins required for cortical organization during cytokinesis and other cellular processes. A mammalian septin gene Sept4 is expressed mainly in postmitotic neural cells and postmeiotic male germ cells. In mouse and human spermatozoa, SEPT4 and other septins are found in the annulus, a cortical ring which separates the middle and principal pieces. Sept4-/- male mice are sterile due to defective morphology and motility of the sperm flagellum. In Sept4 null spermatozoa, the annulus is replaced by a fragile segment lacking cortical material, beneath which kinesin-mediated intraflagellar transport stalls. The sterility is rescued by injection of sperm into oocytes, demonstrating that each Sept4 null spermatozoon carries an intact haploid genome. The annulus/septin ring is also disorganized in spermatozoa from a subset of human patients with asthenospermia syndrome. Thus, cortical organization based on circular assembly of the septin cytoskeleton is essential for the structural and mechanical integrity of mammalian spermatozoa.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources