Spatial structure of complex cell receptive fields measured with natural images - PubMed (original) (raw)

Comparative Study

. 2005 Mar 3;45(5):781-91.

doi: 10.1016/j.neuron.2005.01.029.

Affiliations

Free article

Comparative Study

Spatial structure of complex cell receptive fields measured with natural images

Jon Touryan et al. Neuron. 2005.

Free article

Abstract

Neuronal receptive fields (RFs) play crucial roles in visual processing. While the linear RFs of early neurons have been well studied, RFs of cortical complex cells are nonlinear and therefore difficult to characterize, especially in the context of natural stimuli. In this study, we used a nonlinear technique to compute the RFs of complex cells from their responses to natural images. We found that each RF is well described by a small number of subunits, which are oriented, localized, and bandpass. These subunits contribute to neuronal responses in a contrast-dependent, polarity-invariant manner, and they can largely predict the orientation and spatial frequency tuning of the cell. Although the RF structures measured with natural images were similar to those measured with random stimuli, natural images were more effective for driving complex cells, thus facilitating rapid identification of the subunits. The subunit RF model provides a useful basis for understanding cortical processing of natural stimuli.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources