Cell responses to FGFR3 signalling: growth, differentiation and apoptosis - PubMed (original) (raw)
Review
. 2005 Apr 1;304(2):417-31.
doi: 10.1016/j.yexcr.2004.11.012. Epub 2004 Dec 16.
Affiliations
- PMID: 15748888
- DOI: 10.1016/j.yexcr.2004.11.012
Review
Cell responses to FGFR3 signalling: growth, differentiation and apoptosis
Corine G M L'Hôte et al. Exp Cell Res. 2005.
Abstract
FGFR3 is a receptor tyrosine kinase (RTK) of the FGF receptor family, known to have a negative regulatory effect on long bone growth. Fgfr3 knockout mice display longer bones and, accordingly, most germline-activating mutations in man are associated with dwarfism. Somatically, some of the same activating mutations are associated with the human cancers multiple myeloma, cervical carcinoma and carcinoma of the bladder. How signalling through FGFR3 can lead to either chondrocyte apoptosis or cancer cell proliferation is not fully understood. Although FGFR3 can be expressed as two main splice isoforms (IIIb or IIIc), there is no apparent link with specific cell responses, which may rather be associated with the cell type or its differentiation status. Depending on cell type, differential activation of STAT proteins has been observed. STAT1 phosphorylation seems to be involved in inhibition of chondrocyte proliferation while activation of the ERK pathway inhibits chondrocyte differentiation and B-cell proliferation (as in multiple myeloma). The role of FGFR3 in epithelial cancers (bladder and cervix) is not known. Some of the cell specificity may arise via modulation of signalling by crosstalk with other signalling pathways. Recently, inhibition of the ERK pathway in achondroplastic mice has provided hope for an approach to the treatment of dwarfism. Further understanding of the ability of FGFR3 to trigger different responses depending on cell type and cellular context may lead to treatments for both skeletal dysplasias and cancer.
Similar articles
- Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4.
Hart KC, Robertson SC, Kanemitsu MY, Meyer AN, Tynan JA, Donoghue DJ. Hart KC, et al. Oncogene. 2000 Jul 6;19(29):3309-20. doi: 10.1038/sj.onc.1203650. Oncogene. 2000. PMID: 10918587 - PTHrP rescues ATDC5 cells from apoptosis induced by FGF receptor 3 mutation.
Yamanaka Y, Tanaka H, Koike M, Nishimura R, Seino Y. Yamanaka Y, et al. J Bone Miner Res. 2003 Aug;18(8):1395-403. doi: 10.1359/jbmr.2003.18.8.1395. J Bone Miner Res. 2003. PMID: 12929929 - Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK.
Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R, Seino Y. Koike M, et al. J Bone Miner Res. 2003 Nov;18(11):2043-51. doi: 10.1359/jbmr.2003.18.11.2043. J Bone Miner Res. 2003. PMID: 14606518 - Cellular signaling by fibroblast growth factor receptors.
Eswarakumar VP, Lax I, Schlessinger J. Eswarakumar VP, et al. Cytokine Growth Factor Rev. 2005 Apr;16(2):139-49. doi: 10.1016/j.cytogfr.2005.01.001. Epub 2005 Feb 1. Cytokine Growth Factor Rev. 2005. PMID: 15863030 Review. - FGF receptor mutations: dimerization syndromes, cell growth suppression, and animal models.
Kannan K, Givol D. Kannan K, et al. IUBMB Life. 2000 Mar;49(3):197-205. doi: 10.1080/713803609. IUBMB Life. 2000. PMID: 10868910 Review.
Cited by
- Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma.
Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ, Buchanan S, Henry JR, Starling JJ, Peng SB. Yadav V, et al. J Biol Chem. 2012 Aug 10;287(33):28087-98. doi: 10.1074/jbc.M112.377218. Epub 2012 Jun 22. J Biol Chem. 2012. PMID: 22730329 Free PMC article. - Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them.
Westerfield JM, Barrera FN. Westerfield JM, et al. J Biol Chem. 2020 Feb 14;295(7):1792-1814. doi: 10.1074/jbc.REV119.009457. Epub 2019 Dec 25. J Biol Chem. 2020. PMID: 31879273 Free PMC article. Review. - Fibroblast growth factor receptor 3-IIIc mediates colorectal cancer growth and migration.
Sonvilla G, Allerstorfer S, Heinzle C, Stättner S, Karner J, Klimpfinger M, Wrba F, Fischer H, Gauglhofer C, Spiegl-Kreinecker S, Grasl-Kraupp B, Holzmann K, Grusch M, Berger W, Marian B. Sonvilla G, et al. Br J Cancer. 2010 Mar 30;102(7):1145-56. doi: 10.1038/sj.bjc.6605596. Epub 2010 Mar 16. Br J Cancer. 2010. PMID: 20234367 Free PMC article. - FGFR3 induces degradation of BMP type I receptor to regulate skeletal development.
Qi H, Jin M, Duan Y, Du X, Zhang Y, Ren F, Wang Y, Tian Q, Wang X, Wang Q, Zhu Y, Xie Y, Liu C, Cao X, Mishina Y, Chen D, Deng CX, Chang Z, Chen L. Qi H, et al. Biochim Biophys Acta. 2014 Jul;1843(7):1237-47. doi: 10.1016/j.bbamcr.2014.03.011. Epub 2014 Mar 20. Biochim Biophys Acta. 2014. PMID: 24657641 Free PMC article. - Targeting the leukemic stem cell: the Holy Grail of leukemia therapy.
Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Bäsecke J, Libra M, Nicoletti F, Stivala F, Milella M, Tafuri A, Cervello M, Martelli AM, McCubrey JA. Misaghian N, et al. Leukemia. 2009 Jan;23(1):25-42. doi: 10.1038/leu.2008.246. Epub 2008 Sep 18. Leukemia. 2009. PMID: 18800146 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous