A theoretical model for the margination of particles within blood vessels - PubMed (original) (raw)
A theoretical model for the margination of particles within blood vessels
P Decuzzi et al. Ann Biomed Eng. 2005 Feb.
Abstract
The margination of a particle circulating in the blood stream has been analyzed. The contribution of buoyancy, hemodynamic forces, van der Waals, electrostatic and steric interactions between the circulating particle and the endothelium lining the vasculature has been considered. For practical applications, the contribution of buoyancy, hemodynamic forces and van der Waals interactions should be only taken into account, whilst the effect of electrostatic and steric repulsion becomes important only at very short distances from the endothelium (1-10 nm). The margination speed and the time for margination t(s) have been estimated as a function of the density of the particle relative to blood delta rho, the Hamaker constant A and radius R of the particle. A critical radius Rc exists for which the margination time t(s) has a maximum, which is influenced by both delta rho and A: the critical radius decreases as the relative density increases and the Hamaker constant decreases. Therefore, particles used for drug delivery should have a radius smaller than the critical value (in the range of 100 nm) to facilitate margination and interaction with the endothelium. While particles used as nanoharvesting agents in proteomics or genomics analysis should have a radius close to the critical value to minimize margination and increase their circulation time.
Similar articles
- Particle margination and its implications on intravenous anticancer drug delivery.
Carboni E, Tschudi K, Nam J, Lu X, Ma AW. Carboni E, et al. AAPS PharmSciTech. 2014 Jun;15(3):762-71. doi: 10.1208/s12249-014-0099-6. Epub 2014 Apr 2. AAPS PharmSciTech. 2014. PMID: 24687242 Free PMC article. Review. - Adhesion of microfabricated particles on vascular endothelium: a parametric analysis.
Decuzzi P, Lee S, Decuzzi M, Ferrari M. Decuzzi P, et al. Ann Biomed Eng. 2004 Jun;32(6):793-802. doi: 10.1023/b:abme.0000030255.36748.d3. Ann Biomed Eng. 2004. PMID: 15255210 - The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows.
Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM, Liu X, Ferrari M, Decuzzi P. Gentile F, et al. J Biomech. 2008 Jul 19;41(10):2312-8. doi: 10.1016/j.jbiomech.2008.03.021. Epub 2008 Jun 20. J Biomech. 2008. PMID: 18571181 - Margination and adhesion of micro- and nanoparticles in the coronary circulation: a step towards optimised drug carrier design.
Forouzandehmehr M, Shamloo A. Forouzandehmehr M, et al. Biomech Model Mechanobiol. 2018 Feb;17(1):205-221. doi: 10.1007/s10237-017-0955-x. Epub 2017 Aug 31. Biomech Model Mechanobiol. 2018. PMID: 28861632 - The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases.
Ta HT, Truong NP, Whittaker AK, Davis TP, Peter K. Ta HT, et al. Expert Opin Drug Deliv. 2018 Jan;15(1):33-45. doi: 10.1080/17425247.2017.1316262. Epub 2017 Apr 13. Expert Opin Drug Deliv. 2018. PMID: 28388248 Review.
Cited by
- Design rules for nanomedical engineering: from physical virology to the applications of virus-based materials in medicine.
Wen AM, Rambhia PH, French RH, Steinmetz NF. Wen AM, et al. J Biol Phys. 2013 Mar;39(2):301-25. doi: 10.1007/s10867-013-9314-z. Epub 2013 Apr 19. J Biol Phys. 2013. PMID: 23860875 Free PMC article. Review. - Delivery of Polymeric Nanoparticles to Target Vascular Diseases.
Agyare E, Kandimalla K. Agyare E, et al. J Biomol Res Ther. 2014 Jan;3(1):S1-001. doi: 10.4172/2167-7956.s1-001. J Biomol Res Ther. 2014. PMID: 26069867 Free PMC article. - Direct Tracking of Particles and Quantification of Margination in Blood Flow.
Carboni EJ, Bognet BH, Bouchillon GM, Kadilak AL, Shor LM, Ward MD, Ma AWK. Carboni EJ, et al. Biophys J. 2016 Oct 4;111(7):1487-1495. doi: 10.1016/j.bpj.2016.08.026. Biophys J. 2016. PMID: 27705771 Free PMC article. - An integrated approach for the rational design of nanovectors for biomedical imaging and therapy.
Godin B, Driessen WH, Proneth B, Lee SY, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P. Godin B, et al. Adv Genet. 2010;69:31-64. doi: 10.1016/S0065-2660(10)69009-8. Adv Genet. 2010. PMID: 20807601 Free PMC article. Review. - Treatment of cancer micrometastasis using a multicomponent chain-like nanoparticle.
Peiris PM, Toy R, Abramowski A, Vicente P, Tucci S, Bauer L, Mayer A, Tam M, Doolittle E, Pansky J, Tran E, Lin D, Schiemann WP, Ghaghada KB, Griswold MA, Karathanasis E. Peiris PM, et al. J Control Release. 2014 Jan 10;173:51-8. doi: 10.1016/j.jconrel.2013.10.031. Epub 2013 Nov 2. J Control Release. 2014. PMID: 24188960 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources