The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth - PubMed (original) (raw)
The pyruvate requirement of some members of the Mycobacterium tuberculosis complex is due to an inactive pyruvate kinase: implications for in vivo growth
Lisa A Keating et al. Mol Microbiol. 2005 Apr.
Free article
Abstract
Through examination of one of the fundamental in vitro characteristics of Mycobacterium bovis--its requirement for pyruvate in glycerol medium--we have revealed a lesion in central metabolism that has profound implications for in vivo growth and nutrition. Not only is M. bovis unable to use glycerol as a sole carbon source but the lack of a functioning pyruvate kinase (PK) means that carbohydrates cannot be used to generate energy. This disruption in sugar catabolism is caused by a single nucleotide polymorphism in pykA, the gene which encodes PK, that substitutes glutamic acid residue 220 with an aspartic acid residue. Substitution of this highly conserved amino acid residue renders PK inactive and thus blocks the ATP generating roles of glycolysis and the pentose phosphate pathway. This mutation was found to occur in other members of the M. tuberculosis complex, namely M. microti and M. africanum. With carbohydrates unable to act as carbon sources, the importance of lipids and gluconeogenesis for growth in vivo becomes apparent. Complementation of M. bovis with the pykA gene from M. tuberculosis H37Rv restored growth on glycerol. Additionally, the presence of a functioning PK caused the colony morphology of the complemented strain to change from the characteristic dysgonic growth of M. bovis to eugonic growth, an appearance normally associated with M. tuberculosis. We also suggest that the glycerol-soaked potato slices used for the derivation of the M. bovis bacillus Calmette and Guérin (BCG) vaccine strain selected for an M. bovis PK+ mutant, a finding that explains the alteration in colony morphology noted during the derivation of BCG. In summary, the disruption of a key step in glycolysis divides the M. tuberculosis complex into two groups with distinct carbon source utilization.
Similar articles
- A single-nucleotide mutation in the -10 promoter region inactivates the narK2X promoter in Mycobacterium bovis and Mycobacterium bovis BCG and has an application in diagnosis.
Chauhan S, Singh A, Tyagi JS. Chauhan S, et al. FEMS Microbiol Lett. 2010 Feb;303(2):190-6. doi: 10.1111/j.1574-6968.2009.01876.x. Epub 2009 Dec 3. FEMS Microbiol Lett. 2010. PMID: 20041953 - Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis.
Netzer R, Krause M, Rittmann D, Peters-Wendisch PG, Eggeling L, Wendisch VF, Sahm H. Netzer R, et al. Arch Microbiol. 2004 Nov;182(5):354-63. doi: 10.1007/s00203-004-0710-4. Epub 2004 Sep 15. Arch Microbiol. 2004. PMID: 15375646 - Study of the gyrB gene polymorphism as a tool to differentiate among Mycobacterium tuberculosis complex subspecies further underlines the older evolutionary age of 'Mycobacterium canettii'.
Goh KS, Fabre M, Huard RC, Schmid S, Sola C, Rastogi N. Goh KS, et al. Mol Cell Probes. 2006 Jun-Aug;20(3-4):182-90. doi: 10.1016/j.mcp.2005.11.008. Epub 2006 Mar 6. Mol Cell Probes. 2006. PMID: 16517119 - Recent advances in our knowledge of Mycobacterium bovis: a feeling for the organism.
Hewinson RG, Vordermeier HM, Smith NH, Gordon SV. Hewinson RG, et al. Vet Microbiol. 2006 Feb 25;112(2-4):127-39. doi: 10.1016/j.vetmic.2005.11.050. Epub 2005 Dec 27. Vet Microbiol. 2006. PMID: 16384663 Review. - Glycerol: a neglected variable in metabolic processes?
Brisson D, Vohl MC, St-Pierre J, Hudson TJ, Gaudet D. Brisson D, et al. Bioessays. 2001 Jun;23(6):534-42. doi: 10.1002/bies.1073. Bioessays. 2001. PMID: 11385633 Review.
Cited by
- High throughput phenotypic analysis of Mycobacterium tuberculosis and Mycobacterium bovis strains' metabolism using biolog phenotype microarrays.
Khatri B, Fielder M, Jones G, Newell W, Abu-Oun M, Wheeler PR. Khatri B, et al. PLoS One. 2013;8(1):e52673. doi: 10.1371/journal.pone.0052673. Epub 2013 Jan 10. PLoS One. 2013. PMID: 23326347 Free PMC article. - Genetic evaluation of Mycobacteriumbovis isolates with MIRU-VNTR and spoligotyping.
Tuzcu N, Köksal F. Tuzcu N, et al. Turk J Med Sci. 2020 Dec 17;50(8):2017-2023. doi: 10.3906/sag-1910-138. Turk J Med Sci. 2020. PMID: 32599971 Free PMC article. - Revisiting the evolution of Mycobacterium bovis.
Mostowy S, Inwald J, Gordon S, Martin C, Warren R, Kremer K, Cousins D, Behr MA. Mostowy S, et al. J Bacteriol. 2005 Sep;187(18):6386-95. doi: 10.1128/JB.187.18.6386-6395.2005. J Bacteriol. 2005. PMID: 16159772 Free PMC article. - Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis.
Rehren G, Walters S, Fontan P, Smith I, Zárraga AM. Rehren G, et al. Tuberculosis (Edinb). 2007 Jul;87(4):347-59. doi: 10.1016/j.tube.2007.02.004. Epub 2007 Apr 11. Tuberculosis (Edinb). 2007. PMID: 17433778 Free PMC article. - Functional genetic diversity among Mycobacterium tuberculosis complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival.
Homolka S, Niemann S, Russell DG, Rohde KH. Homolka S, et al. PLoS Pathog. 2010 Jul 8;6(7):e1000988. doi: 10.1371/journal.ppat.1000988. PLoS Pathog. 2010. PMID: 20628579 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources