Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis - PubMed (original) (raw)
. 2005 May 27;280(21):20509-15.
doi: 10.1074/jbc.M410148200. Epub 2005 Mar 21.
Affiliations
- PMID: 15781473
- DOI: 10.1074/jbc.M410148200
Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis
David Davidson et al. J Biol Chem. 2005.
Abstract
Signaling by fibroblast growth factor (FGF) 18 and FGF receptor 3 (FGFR3) have been shown to regulate proliferation, differentiation, and matrix production of articular and growth plate chondrocytes in vivo and in vitro. Notably, the congenital absence of either FGF18 or FGFR3 resulted in similar expansion of the growth plates of fetal mice and the addition of FGF18 to human articular chondrocytes in culture enhanced proliferation and matrix production. Based on these and other experiments it has been proposed that FGF18 signals through FGFR3 to promote cartilage production by chondrocytes. Its role in chondrogenesis remains to be defined. In the current work we used the limb buds of FGFR3(+/+) and FGFR3(-/-) embryonic mice as a source of mesenchymal cells to determine how FGF18 signaling affects chondrogenesis. Confocal laser-scanning microscopy demonstrated impaired cartilage nodule formation in the FGFR3(-/-) cultures. Potential contributing factors to the phenotype were identified as impaired mitogenic response to FGF18, decreased production of type II collagen and proteoglycan in response to FGF18 stimulation, impaired interactions with the extracellular matrix resulting from altered integrin receptor expression, and altered expression of FGFR1 and FGFR2. The data identified FGF18 as a selective ligand for FGFR3 in limb bud mesenchymal cells, which suppressed proliferation and promoted their differentiation and production of cartilage matrix. This work, thus, identifies FGF18 and FGFR3 as potential molecular targets for intervention in tissue engineering aimed at cartilage repair and regeneration of damaged cartilage.
Similar articles
- Sequential exposure to fibroblast growth factors (FGF) 2, 9 and 18 enhances hMSC chondrogenic differentiation.
Correa D, Somoza RA, Lin P, Greenberg S, Rom E, Duesler L, Welter JF, Yayon A, Caplan AI. Correa D, et al. Osteoarthritis Cartilage. 2015 Mar;23(3):443-53. doi: 10.1016/j.joca.2014.11.013. Epub 2014 Nov 25. Osteoarthritis Cartilage. 2015. PMID: 25464167 Free PMC article. - Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis.
Barnard JC, Williams AJ, Rabier B, Chassande O, Samarut J, Cheng SY, Bassett JH, Williams GR. Barnard JC, et al. Endocrinology. 2005 Dec;146(12):5568-80. doi: 10.1210/en.2005-0762. Epub 2005 Sep 8. Endocrinology. 2005. PMID: 16150908 - Fibroblast growth factor-18 is a trophic factor for mature chondrocytes and their progenitors.
Ellsworth JL, Berry J, Bukowski T, Claus J, Feldhaus A, Holderman S, Holdren MS, Lum KD, Moore EE, Raymond F, Ren H, Shea P, Sprecher C, Storey H, Thompson DL, Waggie K, Yao L, Fernandes RJ, Eyre DR, Hughes SD. Ellsworth JL, et al. Osteoarthritis Cartilage. 2002 Apr;10(4):308-20. doi: 10.1053/joca.2002.0514. Osteoarthritis Cartilage. 2002. PMID: 11950254 - Fibroblast growth factor control of cartilage homeostasis.
Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Ellman MB, et al. J Cell Biochem. 2013 Apr;114(4):735-42. doi: 10.1002/jcb.24418. J Cell Biochem. 2013. PMID: 23060229 Free PMC article. Review. - Biological impact of the fibroblast growth factor family on articular cartilage and intervertebral disc homeostasis.
Ellman MB, An HS, Muddasani P, Im HJ. Ellman MB, et al. Gene. 2008 Aug 15;420(1):82-9. doi: 10.1016/j.gene.2008.04.019. Epub 2008 May 9. Gene. 2008. PMID: 18565695 Free PMC article. Review.
Cited by
- Role of signaling pathways in age-related orthopedic diseases: focus on the fibroblast growth factor family.
Li HZ, Zhang JL, Yuan DL, Xie WQ, Ladel CH, Mobasheri A, Li YS. Li HZ, et al. Mil Med Res. 2024 Jun 21;11(1):40. doi: 10.1186/s40779-024-00544-5. Mil Med Res. 2024. PMID: 38902808 Free PMC article. Review. - Advances in 3D bioprinting for regenerative medicine applications.
Loukelis K, Koutsomarkos N, Mikos AG, Chatzinikolaidou M. Loukelis K, et al. Regen Biomater. 2024 Mar 26;11:rbae033. doi: 10.1093/rb/rbae033. eCollection 2024. Regen Biomater. 2024. PMID: 38845855 Free PMC article. Review. - Overexpression of Fgf18 in cranial neural crest cells recapitulates Pierre Robin sequence in mice.
Lv Y, Wang Q, Lin C, Zheng X, Zhang Y, Hu X. Lv Y, et al. Front Cell Dev Biol. 2024 Apr 17;12:1376814. doi: 10.3389/fcell.2024.1376814. eCollection 2024. Front Cell Dev Biol. 2024. PMID: 38694818 Free PMC article. - Transcriptomic profiling reveals key early response genes during GDF6-mediated differentiation of human adipose-derived stem cells to nucleus pulposus cells.
Gilbert HTJ, Wignall FEJ, Zeef L, Hoyland JA, Richardson SM. Gilbert HTJ, et al. JOR Spine. 2024 Jan 19;7(1):e1315. doi: 10.1002/jsp2.1315. eCollection 2024 Mar. JOR Spine. 2024. PMID: 38249721 Free PMC article. - Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System.
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Kim Y, et al. Int J Mol Sci. 2023 Nov 7;24(22):16024. doi: 10.3390/ijms242216024. Int J Mol Sci. 2023. PMID: 38003216 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources
Molecular Biology Databases
Miscellaneous