RNA-dependent cysteine biosynthesis in archaea - PubMed (original) (raw)
. 2005 Mar 25;307(5717):1969-72.
doi: 10.1126/science.1108329.
Affiliations
- PMID: 15790858
- DOI: 10.1126/science.1108329
RNA-dependent cysteine biosynthesis in archaea
Anselm Sauerwald et al. Science. 2005.
Abstract
Several methanogenic archaea lack cysteinyl-transfer RNA (tRNA) synthetase (CysRS), the essential enzyme that provides Cys-tRNA(Cys) for translation in most organisms. Partial purification of the corresponding activity from Methanocaldococcus jannaschii indicated that tRNA(Cys) becomes acylated with O-phosphoserine (Sep) but not with cysteine. Further analyses identified a class II-type O-phosphoseryl-tRNA synthetase (SepRS) and Sep-tRNA:Cys-tRNA synthase (SepCysS). SepRS specifically forms Sep-tRNA(Cys), which is then converted to Cys-tRNA(Cys) by SepCysS. Comparative genomic analyses suggest that this pathway, encoded in all organisms lacking CysRS, can also act as the sole route for cysteine biosynthesis. This was proven for Methanococcus maripaludis, where deletion of the SepRS-encoding gene resulted in cysteine auxotrophy. As the conversions of Sep-tRNA to Cys-tRNA or to selenocysteinyl-tRNA are chemically analogous, the catalytic activity of SepCysS provides a means by which both cysteine and selenocysteine may have originally been added to the genetic code.
Similar articles
- RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
Mukai T, Crnković A, Umehara T, Ivanova NN, Kyrpides NC, Söll D. Mukai T, et al. mBio. 2017 May 9;8(3):e00561-17. doi: 10.1128/mBio.00561-17. mBio. 2017. PMID: 28487430 Free PMC article. - Ancient translation factor is essential for tRNA-dependent cysteine biosynthesis in methanogenic archaea.
Liu Y, Nakamura A, Nakazawa Y, Asano N, Ford KA, Hohn MJ, Tanaka I, Yao M, Söll D. Liu Y, et al. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10520-5. doi: 10.1073/pnas.1411267111. Epub 2014 Jul 7. Proc Natl Acad Sci U S A. 2014. PMID: 25002468 Free PMC article. - Crystallographic analysis of a subcomplex of the transsulfursome with tRNA for Cys-tRNA(Cys) synthesis.
Chen M, Nakazawa Y, Kubo Y, Asano N, Kato K, Tanaka I, Yao M. Chen M, et al. Acta Crystallogr F Struct Biol Commun. 2016 Jul;72(Pt 7):569-72. doi: 10.1107/S2053230X16009559. Epub 2016 Jun 28. Acta Crystallogr F Struct Biol Commun. 2016. PMID: 27380375 Free PMC article. - Cys-tRNACys formation and cysteine biosynthesis in methanogenic archaea: two faces of the same problem?
Ambrogelly A, Kamtekar S, Sauerwald A, Ruan B, Tumbula-Hansen D, Kennedy D, Ahel I, Söll D. Ambrogelly A, et al. Cell Mol Life Sci. 2004 Oct;61(19-20):2437-45. doi: 10.1007/s00018-004-4194-9. Cell Mol Life Sci. 2004. PMID: 15526152 Review. - Cysteinyl-tRNA formation and prolyl-tRNA synthetase.
Jacquin-Becker C, Ahel I, Ambrogelly A, Ruan B, Söll D, Stathopoulos C. Jacquin-Becker C, et al. FEBS Lett. 2002 Mar 6;514(1):34-6. doi: 10.1016/s0014-5793(02)02331-1. FEBS Lett. 2002. PMID: 11904177 Review.
Cited by
- A single tRNA base pair mediates bacterial tRNA-dependent biosynthesis of asparagine.
Bailly M, Giannouli S, Blaise M, Stathopoulos C, Kern D, Becker HD. Bailly M, et al. Nucleic Acids Res. 2006;34(21):6083-94. doi: 10.1093/nar/gkl622. Epub 2006 Oct 29. Nucleic Acids Res. 2006. PMID: 17074748 Free PMC article. - Biosynthesis of selenocysteine on its tRNA in eukaryotes.
Xu XM, Carlson BA, Mix H, Zhang Y, Saira K, Glass RS, Berry MJ, Gladyshev VN, Hatfield DL. Xu XM, et al. PLoS Biol. 2007 Jan;5(1):e4. doi: 10.1371/journal.pbio.0050004. PLoS Biol. 2007. PMID: 17194211 Free PMC article. - Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights into the evolutionary origins of the metabolic network structure.
Piedrafita G, Varma SJ, Castro C, Messner CB, Szyrwiel L, Griffin JL, Ralser M. Piedrafita G, et al. PLoS Biol. 2021 Dec 3;19(12):e3001468. doi: 10.1371/journal.pbio.3001468. eCollection 2021 Dec. PLoS Biol. 2021. PMID: 34860829 Free PMC article. - Genetically Encoded Protein Phosphorylation in Mammalian Cells.
Beránek V, Reinkemeier CD, Zhang MS, Liang AD, Kym G, Chin JW. Beránek V, et al. Cell Chem Biol. 2018 Sep 20;25(9):1067-1074.e5. doi: 10.1016/j.chembiol.2018.05.013. Epub 2018 Jun 21. Cell Chem Biol. 2018. PMID: 29937407 Free PMC article. - Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation.
Burroughs AM, Iyer LM, Aravind L. Burroughs AM, et al. Proteins. 2009 Jun;75(4):895-910. doi: 10.1002/prot.22298. Proteins. 2009. PMID: 19089947 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials