DNA looping - PubMed (original) (raw)
Review
DNA looping
K S Matthews. Microbiol Rev. 1992 Mar.
Abstract
DNA-looping mechanisms are part of networks that regulate all aspects of DNA metabolism, including transcription, replication, and recombination. DNA looping is involved in regulation of transcriptional initiation in prokaryotic operons, including ara, gal, lac, and deo, and in phage systems. Similarly, in eukaryotic organisms, the effects of enhancers appear to be mediated at least in part by loop formation, and examples of DNA looping by hormone receptor proteins and developmental regulatory proteins have been found. In addition, instances of looped structures have been found in replication and in recombination in both prokaryotes and eukaryotes. DNA loop formation may have different functions in different cellular contexts; in some cases, the loop itself is requisite for regulation, while in others the increase in the effective local concentration of protein may account for the effects observed. The ability of DNA to form loops is affected by the distance between binding sites; by the DNA sequence, which determines deformability and bendability; and by the presence of other proteins that exert an influence on the conformation of a particular sequence. Alteration of the stability of DNA loops and/or protein-DNA binding by extra- or intracellular signals provides responsivity to changing metabolic or environmental conditions. The fundamental property of site-specific protein binding to DNA can be combined with protein-protein and protein-ligand interaction to generate a broad range of physiological states.
Similar articles
- Concentration and length dependence of DNA looping in transcriptional regulation.
Han L, Garcia HG, Blumberg S, Towles KB, Beausang JF, Nelson PC, Phillips R. Han L, et al. PLoS One. 2009 May 25;4(5):e5621. doi: 10.1371/journal.pone.0005621. PLoS One. 2009. PMID: 19479049 Free PMC article. - DNA looping in prokaryotes: experimental and theoretical approaches.
Cournac A, Plumbridge J. Cournac A, et al. J Bacteriol. 2013 Mar;195(6):1109-19. doi: 10.1128/JB.02038-12. Epub 2013 Jan 4. J Bacteriol. 2013. PMID: 23292776 Free PMC article. Review. - Efficient chromosomal-scale DNA looping in Escherichia coli using multiple DNA-looping elements.
Hao N, Sneppen K, Shearwin KE, Dodd IB. Hao N, et al. Nucleic Acids Res. 2017 May 19;45(9):5074-5085. doi: 10.1093/nar/gkx069. Nucleic Acids Res. 2017. PMID: 28160597 Free PMC article. - Long-range cooperativity between gene regulatory sequences in a prokaryote.
Dandanell G, Valentin-Hansen P, Larsen JE, Hammer K. Dandanell G, et al. Nature. 1987 Feb 26-Mar 4;325(6107):823-6. doi: 10.1038/325823a0. Nature. 1987. PMID: 3547140 - [Mode of action of cyclic amp in prokaryotes and eukaryotes, CAP and cAMP-dependent protein kinases].
de Gunzburg J. de Gunzburg J. Biochimie. 1985 Jun;67(6):563-82. doi: 10.1016/s0300-9084(85)80196-6. Biochimie. 1985. PMID: 2413906 Review. French.
Cited by
- DNA looping by FokI: the impact of twisting and bending rigidity on protein-induced looping dynamics.
Laurens N, Rusling DA, Pernstich C, Brouwer I, Halford SE, Wuite GJ. Laurens N, et al. Nucleic Acids Res. 2012 Jun;40(11):4988-97. doi: 10.1093/nar/gks184. Epub 2012 Feb 28. Nucleic Acids Res. 2012. PMID: 22373924 Free PMC article. - Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion.
Vanzi F, Broggio C, Sacconi L, Pavone FS. Vanzi F, et al. Nucleic Acids Res. 2006 Jul 11;34(12):3409-20. doi: 10.1093/nar/gkl393. Print 2006. Nucleic Acids Res. 2006. PMID: 16835309 Free PMC article. - Homolog comparisons further reconcile in vitro and in vivo correlations of protein activities by revealing over-looked physiological factors.
Tungtur S, Schwingen KM, Riepe JJ, Weeramange CJ, Swint-Kruse L. Tungtur S, et al. Protein Sci. 2019 Oct;28(10):1806-1818. doi: 10.1002/pro.3695. Epub 2019 Aug 9. Protein Sci. 2019. PMID: 31351028 Free PMC article. - Kinetics of internal-loop formation in polypeptide chains: a simulation study.
Doucet D, Roitberg A, Hagen SJ. Doucet D, et al. Biophys J. 2007 Apr 1;92(7):2281-9. doi: 10.1529/biophysj.106.092379. Epub 2007 Jan 5. Biophys J. 2007. PMID: 17208979 Free PMC article. - In vivo tests of thermodynamic models of transcription repressor function.
Tungtur S, Skinner H, Zhan H, Swint-Kruse L, Beckett D. Tungtur S, et al. Biophys Chem. 2011 Nov;159(1):142-51. doi: 10.1016/j.bpc.2011.06.005. Epub 2011 Jun 15. Biophys Chem. 2011. PMID: 21715082 Free PMC article.
References
- Annu Rev Genet. 1974;8:219-42 - PubMed
- Proc Natl Acad Sci U S A. 1974 Mar;71(3):593-7 - PubMed
- Proc Natl Acad Sci U S A. 1974 Jun;71(6):2314-8 - PubMed
- J Biomol Struct Dyn. 1987 Aug;5(1):1-13 - PubMed
- J Mol Biol. 1986 Apr 5;188(3):355-67 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources