Genetic pathways to glioblastomas - PubMed (original) (raw)
Review
Genetic pathways to glioblastomas
Hiroko Ohgaki. Neuropathology. 2005 Mar.
Abstract
Glioblastomas, the most frequent and malignant human brain tumors, may develop de novo (primary glioblastoma) or by progression from low-grade or anaplastic astrocytoma (secondary glioblastoma). These glioblastoma subtypes constitute distinct disease entities that affect patients of different ages and develop through different genetic pathways. Our recent population-based study in the Canton of Zürich, Switzerland, shows that primary glioblastomas develop in older patients (mean age, 62 years) and typically show LOH on chromosome 10q (69%) and other genetic alterations (EGFR amplification, TP53 mutations, p16INK4a deletion, and PTEN mutations) at frequencies of 24-34%. Secondary glioblastomas develop in younger patients (mean, 45 years) and frequently show TP53 mutations (65%) and LOH 10q (63%). Common to both primary and secondary glioblastoma is LOH on 10q, distal to the PTEN locus; a putative suppressor gene at 10q25-qter may be responsible for the glioblastoma phenotype. Of the TP53 point mutations in secondary glioblastomas, 57% were located in hotspot codons 248 and 273, while in primary glioblastomas, mutations were more widely distributed. Furthermore, G:C-->A:T mutations at CpG sites were more frequent in secondary than in primary glioblastomas (56% vs 30%). These data suggest that the TP53 mutations in these glioblastoma subtypes arise through different mechanisms. There is evidence that G:C-->A:T transition mutations at CpG sites in the TP53 gene are significantly more frequent in low-grade astrocytomas with promoter methylation of the O6-methylguanine-DNA methyltransferase (MGMT) gene than in those without methylation. This suggests that, in addition to deamination of 5-methylcytosine (the best known mechanism of formation of G:C-->A:T transitions at CpG sites), involvement of alkylating agents that produce O6-methylguanine or related adducts recognized by MGMT cannot be excluded in the pathway leading to secondary glioblastomas.
Similar articles
- Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas.
Ohgaki H, Kleihues P. Ohgaki H, et al. J Neuropathol Exp Neurol. 2005 Jun;64(6):479-89. doi: 10.1093/jnen/64.6.479. J Neuropathol Exp Neurol. 2005. PMID: 15977639 Review. - Genetic pathways to glioblastoma: a population-based study.
Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL, Burkhard C, Schüler D, Probst-Hensch NM, Maiorka PC, Baeza N, Pisani P, Yonekawa Y, Yasargil MG, Lütolf UM, Kleihues P. Ohgaki H, et al. Cancer Res. 2004 Oct 1;64(19):6892-9. doi: 10.1158/0008-5472.CAN-04-1337. Cancer Res. 2004. PMID: 15466178 - Genetic pathways to primary and secondary glioblastoma.
Ohgaki H, Kleihues P. Ohgaki H, et al. Am J Pathol. 2007 May;170(5):1445-53. doi: 10.2353/ajpath.2007.070011. Am J Pathol. 2007. PMID: 17456751 Free PMC article. Review. - Loss of heterozygosity on chromosome 10 is more extensive in primary (de novo) than in secondary glioblastomas.
Fujisawa H, Reis RM, Nakamura M, Colella S, Yonekawa Y, Kleihues P, Ohgaki H. Fujisawa H, et al. Lab Invest. 2000 Jan;80(1):65-72. doi: 10.1038/labinvest.3780009. Lab Invest. 2000. PMID: 10653004 - Loss of heterozygosity on chromosome 19 in secondary glioblastomas.
Nakamura M, Yang F, Fujisawa H, Yonekawa Y, Kleihues P, Ohgaki H. Nakamura M, et al. J Neuropathol Exp Neurol. 2000 Jun;59(6):539-43. doi: 10.1093/jnen/59.6.539. J Neuropathol Exp Neurol. 2000. PMID: 10850866
Cited by
- Glioblastoma multiforme: Molecular characterization and current treatment strategy (Review).
Zhang X, Zhang W, Cao WD, Cheng G, Zhang YQ. Zhang X, et al. Exp Ther Med. 2012 Jan;3(1):9-14. doi: 10.3892/etm.2011.367. Epub 2011 Oct 18. Exp Ther Med. 2012. PMID: 22969836 Free PMC article. - Glioblastoma Multiforme Oncogenomics and Signaling Pathways.
Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD, Yan H, Adamson C. Kanu OO, et al. Clin Med Oncol. 2009 Apr 8;3:39-52. doi: 10.4137/cmo.s1008. Clin Med Oncol. 2009. PMID: 19777070 Free PMC article. - Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line.
Carminati PO, Mello SS, Fachin AL, Junta CM, Sandrin-Garcia P, Carlotti CG, Donadi EA, Passos GA, Sakamoto-Hojo ET. Carminati PO, et al. Genet Mol Biol. 2010 Jan;33(1):159-68. doi: 10.1590/S1415-47572010005000013. Epub 2010 Mar 1. Genet Mol Biol. 2010. PMID: 21637621 Free PMC article. - Highly Expressed CYBRD1 Associated with Glioma Recurrence Regulates the Immune Response of Glioma Cells to Interferon.
Qing M, Zhou J, Chen W, Cheng L. Qing M, et al. Evid Based Complement Alternat Med. 2021 Jul 16;2021:2793222. doi: 10.1155/2021/2793222. eCollection 2021. Evid Based Complement Alternat Med. 2021. PMID: 34326882 Free PMC article. - Progesterone Receptor Together with PKCα Expression as Prognostic Factors for Astrocytomas Malignancy.
Arcos-Montoya D, Wegman-Ostrosky T, Mejía-Pérez S, De la Fuente-Granada M, Camacho-Arroyo I, García-Carrancá A, Velasco-Velázquez MA, Manjarrez-Marmolejo J, González-Arenas A. Arcos-Montoya D, et al. Onco Targets Ther. 2021 Jun 16;14:3757-3768. doi: 10.2147/OTT.S280314. eCollection 2021. Onco Targets Ther. 2021. PMID: 34168461 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous