Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions - PubMed (original) (raw)
. 2005 Apr 14;434(7035):907-13.
doi: 10.1038/nature03485.
Leandros-Vassilios F Vassiliou, Panagiotis Karakaidos, Panayotis Zacharatos, Athanassios Kotsinas, Triantafillos Liloglou, Monica Venere, Richard A Ditullio Jr, Nikolaos G Kastrinakis, Brynn Levy, Dimitris Kletsas, Akihiro Yoneta, Meenhard Herlyn, Christos Kittas, Thanos D Halazonetis
Affiliations
- PMID: 15829965
- DOI: 10.1038/nature03485
Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions
Vassilis G Gorgoulis et al. Nature. 2005.
Abstract
DNA damage checkpoint genes, such as p53, are frequently mutated in human cancer, but the selective pressure for their inactivation remains elusive. We analysed a panel of human lung hyperplasias, all of which retained wild-type p53 genes and had no signs of gross chromosomal instability, and found signs of a DNA damage response, including histone H2AX and Chk2 phosphorylation, p53 accumulation, focal staining of p53 binding protein 1 (53BP1) and apoptosis. Progression to carcinoma was associated with p53 or 53BP1 inactivation and decreased apoptosis. A DNA damage response was also observed in dysplastic nevi and in human skin xenografts, in which hyperplasia was induced by overexpression of growth factors. Both lung and experimentally-induced skin hyperplasias showed allelic imbalance at loci that are prone to DNA double-strand break formation when DNA replication is compromised (common fragile sites). We propose that, from its earliest stages, cancer development is associated with DNA replication stress, which leads to DNA double-strand breaks, genomic instability and selective pressure for p53 mutations.
Comment in
- Medicine: aborting the birth of cancer.
Venkitaraman AR. Venkitaraman AR. Nature. 2005 Apr 14;434(7035):829-30. doi: 10.1038/434829a. Nature. 2005. PMID: 15829943 No abstract available.
Similar articles
- DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis.
Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Ørntoft T, Lukas J, Bartek J. Bartkova J, et al. Nature. 2005 Apr 14;434(7035):864-70. doi: 10.1038/nature03482. Nature. 2005. PMID: 15829956 - STAT-1 facilitates the ATM activated checkpoint pathway following DNA damage.
Townsend PA, Cragg MS, Davidson SM, McCormick J, Barry S, Lawrence KM, Knight RA, Hubank M, Chen PL, Latchman DS, Stephanou A. Townsend PA, et al. J Cell Sci. 2005 Apr 15;118(Pt 8):1629-39. doi: 10.1242/jcs.01728. Epub 2005 Mar 22. J Cell Sci. 2005. PMID: 15784679 Retracted. - A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response.
Zhang D, Zaugg K, Mak TW, Elledge SJ. Zhang D, et al. Cell. 2006 Aug 11;126(3):529-42. doi: 10.1016/j.cell.2006.06.039. Cell. 2006. PMID: 16901786 - ATM signaling and 53BP1.
Zgheib O, Huyen Y, DiTullio RA Jr, Snyder A, Venere M, Stavridi ES, Halazonetis TD. Zgheib O, et al. Radiother Oncol. 2005 Aug;76(2):119-22. doi: 10.1016/j.radonc.2005.06.026. Radiother Oncol. 2005. PMID: 16024119 Review. - An oncogene-induced DNA damage model for cancer development.
Halazonetis TD, Gorgoulis VG, Bartek J. Halazonetis TD, et al. Science. 2008 Mar 7;319(5868):1352-5. doi: 10.1126/science.1140735. Science. 2008. PMID: 18323444 Review.
Cited by
- Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability.
Igarashi T, Yano K, Endo S, Shiotani B. Igarashi T, et al. Cancers (Basel). 2024 Oct 17;16(20):3507. doi: 10.3390/cancers16203507. Cancers (Basel). 2024. PMID: 39456601 Free PMC article. Review. - The DNA damage response in viral-induced cellular transformation.
Nikitin PA, Luftig MA. Nikitin PA, et al. Br J Cancer. 2012 Jan 31;106(3):429-35. doi: 10.1038/bjc.2011.612. Epub 2012 Jan 12. Br J Cancer. 2012. PMID: 22240795 Free PMC article. Review. - Berzosertib plus gemcitabine versus gemcitabine alone in platinum-resistant high-grade serous ovarian cancer: a multicentre, open-label, randomised, phase 2 trial.
Konstantinopoulos PA, Cheng SC, Wahner Hendrickson AE, Penson RT, Schumer ST, Doyle LA, Lee EK, Kohn EC, Duska LR, Crispens MA, Olawaiye AB, Winer IS, Barroilhet LM, Fu S, McHale MT, Schilder RJ, Färkkilä A, Chowdhury D, Curtis J, Quinn RS, Bowes B, D'Andrea AD, Shapiro GI, Matulonis UA. Konstantinopoulos PA, et al. Lancet Oncol. 2020 Jul;21(7):957-968. doi: 10.1016/S1470-2045(20)30180-7. Epub 2020 Jun 15. Lancet Oncol. 2020. PMID: 32553118 Free PMC article. Clinical Trial. - Somatic inactivation of ATM in hematopoietic cells predisposes mice to cyclin D3 dependent T cell acute lymphoblastic leukemia.
Ehrlich LA, Yang-Iott K, DeMicco A, Bassing CH. Ehrlich LA, et al. Cell Cycle. 2015;14(3):388-98. doi: 10.4161/15384101.2014.988020. Cell Cycle. 2015. PMID: 25659036 Free PMC article. - H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK.
Olcina MM, Leszczynska KB, Senra JM, Isa NF, Harada H, Hammond EM. Olcina MM, et al. Oncogene. 2016 Feb 11;35(6):793-9. doi: 10.1038/onc.2015.134. Epub 2015 May 11. Oncogene. 2016. PMID: 25961932 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous