Sub-diffraction-limited optical imaging with a silver superlens - PubMed (original) (raw)
. 2005 Apr 22;308(5721):534-7.
doi: 10.1126/science.1108759.
Affiliations
- PMID: 15845849
- DOI: 10.1126/science.1108759
Sub-diffraction-limited optical imaging with a silver superlens
Nicholas Fang et al. Science. 2005.
Abstract
Recent theory has predicted a superlens that is capable of producing sub-diffraction-limited images. This superlens would allow the recovery of evanescent waves in an image via the excitation of surface plasmons. Using silver as a natural optical superlens, we demonstrated sub-diffraction-limited imaging with 60-nanometer half-pitch resolution, or one-sixth of the illumination wavelength. By proper design of the working wavelength and the thickness of silver that allows access to a broad spectrum of subwavelength features, we also showed that arbitrary nanostructures can be imaged with good fidelity. The optical superlens promises exciting avenues to nanoscale optical imaging and ultrasmall optoelectronic devices.
Comment in
- Applied physics. How to build a superlens.
Smith DR. Smith DR. Science. 2005 Apr 22;308(5721):502-3. doi: 10.1126/science.1110900. Science. 2005. PMID: 15845838 No abstract available.
Similar articles
- Silver superlens using antisymmetric surface plasmon modes.
Lee WJ, Kim JE, Park HY, Lee MH. Lee WJ, et al. Opt Express. 2010 Mar 15;18(6):5459-65. doi: 10.1364/OE.18.005459. Opt Express. 2010. PMID: 20389562 - Far-field optical superlens.
Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X. Liu Z, et al. Nano Lett. 2007 Feb;7(2):403-8. doi: 10.1021/nl062635n. Nano Lett. 2007. PMID: 17298007 - Far-field optical hyperlens magnifying sub-diffraction-limited objects.
Liu Z, Lee H, Xiong Y, Sun C, Zhang X. Liu Z, et al. Science. 2007 Mar 23;315(5819):1686. doi: 10.1126/science.1137368. Science. 2007. PMID: 17379801 - Near-field microscopy through a SiC superlens.
Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R. Taubner T, et al. Science. 2006 Sep 15;313(5793):1595. doi: 10.1126/science.1131025. Science. 2006. PMID: 16973871 - Experimental studies of far-field superlens for sub-diffractional optical imaging.
Liu Z, Durant S, Lee H, Pikus Y, Xiong Y, Sun C, Zhang X. Liu Z, et al. Opt Express. 2007 May 28;15(11):6947-54. doi: 10.1364/oe.15.006947. Opt Express. 2007. PMID: 19547010
Cited by
- Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms.
Lee D, Gwak J, Badloe T, Palomba S, Rho J. Lee D, et al. Nanoscale Adv. 2020 Jan 15;2(2):605-625. doi: 10.1039/c9na00751b. eCollection 2020 Feb 18. Nanoscale Adv. 2020. PMID: 36133253 Free PMC article. Review. - A planar ultraviolet objective lens for optical axis free imaging nanolithography by employing optical negative refraction.
Kong W, Liu L, Wang C, Pu M, Gao P, Liu K, Luo Y, Jin Q, Zhao C, Luo X. Kong W, et al. Nanoscale Adv. 2022 Mar 8;4(8):2011-2017. doi: 10.1039/d1na00883h. eCollection 2022 Apr 12. Nanoscale Adv. 2022. PMID: 36133413 Free PMC article. - Subwavelength Metamaterial Unit Cell for Low-Frequency Electromagnetic Absorber Applications.
Jeong H, Nguyen TT, Lim S. Jeong H, et al. Sci Rep. 2018 Nov 13;8(1):16774. doi: 10.1038/s41598-018-35267-w. Sci Rep. 2018. PMID: 30425316 Free PMC article. - Experimental verification of a broadband asymmetric transmission metamaterial in the terahertz region.
Tao X, Qi L, Yang J, Liu F. Tao X, et al. RSC Adv. 2020 Feb 10;10(11):6179-6184. doi: 10.1039/c9ra10861k. eCollection 2020 Feb 7. RSC Adv. 2020. PMID: 35496008 Free PMC article. - A reconfigurable plasmofluidic lens.
Zhao C, Liu Y, Zhao Y, Fang N, Huang TJ. Zhao C, et al. Nat Commun. 2013;4:2305. doi: 10.1038/ncomms3305. Nat Commun. 2013. PMID: 23929463 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources