Suppression of experimental autoimmune encephalomyelitis using estrogen receptor-selective ligands - PubMed (original) (raw)
. 2005 May;185(2):243-52.
doi: 10.1677/joe.1.06063.
Affiliations
- PMID: 15845917
- DOI: 10.1677/joe.1.06063
Suppression of experimental autoimmune encephalomyelitis using estrogen receptor-selective ligands
M Merle Elloso et al. J Endocrinol. 2005 May.
Abstract
Estrogens have been shown to modulate disease activity in experimental autoimmune encephalomyelitis (EAE), the mouse model for multiple sclerosis. Consistent with these findings, the severity of disease is reduced in pregnant women with multiple sclerosis when levels of estrogens are high. Estrogens bind to two known estrogen receptors (ER), ERalpha and ERbeta. The relative contribution of these receptors to estrogen-mediated suppression of EAE was explored using ER-selective ligands. The ER antagonist ICI 182 780 reversed the suppressive effects of 17beta-estradiol (E2), demonstrating that the protective effects of E2 on disease are dependent upon ER signaling. Treatment of SJL mice with the ERalpha-selective agonist proteolipid protein (PPT) prior to the induction of disease resulted in suppression of clinical symptoms of disease, whereas treatment with an ERbeta-selective agonist (WAY-202041) had no effect. Treatment of mice with PLP peptide 139-151 (PPT) was also associated with decreased immune responses associated with disease. Consistent with its lack of effect on disease, the ERbeta agonist had minimal effects on immune responses. The use of selective estrogen receptor modulators (SERMs) in this model was also explored, and we show that raloxifene and WAY-138923 were also effective in suppressing disease. These results demonstrate the beneficial effects of estrogen receptor ligands, in particular ERalpha-selective ligands, and may have implications in the development of therapeutic strategies for multiple sclerosis.
Similar articles
- Targeting estrogen receptor subtypes (ERα and ERβ) with selective ER modulators in ovarian cancer.
Chan KK, Leung TH, Chan DW, Wei N, Lau GT, Liu SS, Siu MK, Ngan HY. Chan KK, et al. J Endocrinol. 2014 May 12;221(2):325-36. doi: 10.1530/JOE-13-0500. Print 2014 May. J Endocrinol. 2014. PMID: 24819599 - The possible role of estrogen and selective estrogen receptor modulators in a rat model of Parkinson's disease.
Baraka AM, Korish AA, Soliman GA, Kamal H. Baraka AM, et al. Life Sci. 2011 May 9;88(19-20):879-85. doi: 10.1016/j.lfs.2011.03.010. Epub 2011 Mar 21. Life Sci. 2011. PMID: 21420980 - Differential effects of estrogen receptor antagonists on pituitary lactotroph proliferation and prolactin release.
Kansra S, Yamagata S, Sneade L, Foster L, Ben-Jonathan N. Kansra S, et al. Mol Cell Endocrinol. 2005 Jul 15;239(1-2):27-36. doi: 10.1016/j.mce.2005.04.008. Mol Cell Endocrinol. 2005. PMID: 15950373 - Estrogen receptors: therapies targeted to receptor subtypes.
Nilsson S, Gustafsson JÅ. Nilsson S, et al. Clin Pharmacol Ther. 2011 Jan;89(1):44-55. doi: 10.1038/clpt.2010.226. Epub 2010 Dec 1. Clin Pharmacol Ther. 2011. PMID: 21124311 Review. - The cardiovascular effects of selective estrogen receptor modulators.
Christodoulakos GE, Lambrinoudaki IV, Botsis DC. Christodoulakos GE, et al. Ann N Y Acad Sci. 2006 Dec;1092:374-84. doi: 10.1196/annals.1365.034. Ann N Y Acad Sci. 2006. PMID: 17308162 Review.
Cited by
- Estrogen deprivation and estrogen receptor α antagonism decrease DSS colitis in female mice.
Hjelt A, Anttila S, Wiklund A, Rokka A, Al-Ramahi D, Toivola DM, Polari L, Määttä J. Hjelt A, et al. Pharmacol Res Perspect. 2024 Aug;12(4):e1234. doi: 10.1002/prp2.1234. Pharmacol Res Perspect. 2024. PMID: 38961539 Free PMC article. - Specific and shared biological functions of PARP2 - is PARP2 really a lil' brother of PARP1?
Szántó M, Yélamos J, Bai P. Szántó M, et al. Expert Rev Mol Med. 2024 May 3;26:e13. doi: 10.1017/erm.2024.14. Expert Rev Mol Med. 2024. PMID: 38698556 Free PMC article. Review. - CD28-signaling can be partially compensated in CD28-knockout mice but is essential for virus elimination in a murine model of multiple sclerosis.
Hülskötter K, Lühder F, Leitzen E, Flügel A, Baumgärtner W. Hülskötter K, et al. Front Immunol. 2023 Apr 5;14:1105432. doi: 10.3389/fimmu.2023.1105432. eCollection 2023. Front Immunol. 2023. PMID: 37090733 Free PMC article. - Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation.
Gharagozloo M, Smith MD, Jin J, Garton T, Taylor M, Chao A, Meyers K, Kornberg MD, Zack DJ, Ohayon J, Calabresi BA, Reich DS, Eberhart CG, Pardo CA, Kemper C, Whartenby KA, Calabresi PA. Gharagozloo M, et al. Acta Neuropathol. 2021 Nov;142(5):899-915. doi: 10.1007/s00401-021-02366-4. Epub 2021 Sep 6. Acta Neuropathol. 2021. PMID: 34487221 Free PMC article. - Effects of the Menstrual Cycle on Neurological Disorders.
Roeder HJ, Leira EC. Roeder HJ, et al. Curr Neurol Neurosci Rep. 2021 May 10;21(7):34. doi: 10.1007/s11910-021-01115-0. Curr Neurol Neurosci Rep. 2021. PMID: 33970361 Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials