Silkworm pathogenic bacteria infection model for identification of novel virulence genes - PubMed (original) (raw)
Silkworm pathogenic bacteria infection model for identification of novel virulence genes
Chikara Kaito et al. Mol Microbiol. 2005 May.
Free article
Abstract
Silkworms are killed by injection of pathogenic bacteria, such as Staphylococcus aureus and Streptococcus pyogenes, into the haemolymph. Gene disruption mutants of S. aureus whose open reading frames were previously uncharacterized and that are conserved among bacteria were examined for their virulence in silkworms. Of these 100 genes, three genes named cvfA, cvfB, and cvfC were required for full virulence of S. aureus in silkworms. Haemolysin production was decreased in these mutants. The cvfA and cvfC mutants also had attenuated virulence in mice. S. pyogenes cvfA-disrupted mutants produced less exotoxin and had attenuated virulence in both silkworms and mice. These results indicate that the silkworm-infection model is useful for identifying bacterial virulence genes.
Similar articles
- Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus.
Kaito C, Morishita D, Matsumoto Y, Kurokawa K, Sekimizu K. Kaito C, et al. Mol Microbiol. 2006 Dec;62(6):1601-17. doi: 10.1111/j.1365-2958.2006.05480.x. Mol Microbiol. 2006. PMID: 17087772 - A silkworm model of pathogenic bacterial infection.
Kaito C, Sekimizu K. Kaito C, et al. Drug Discov Ther. 2007 Oct;1(2):89-93. Drug Discov Ther. 2007. PMID: 22504393 - The cvfC operon of Staphylococcus aureus contributes to virulence via expression of the thyA gene.
Ikuo M, Kaito C, Sekimizu K. Ikuo M, et al. Microb Pathog. 2010 Jul-Aug;49(1-2):1-7. doi: 10.1016/j.micpath.2010.03.010. Epub 2010 Mar 27. Microb Pathog. 2010. PMID: 20347953 - Understanding of bacterial virulence using the silkworm infection model.
Kaito C. Kaito C. Drug Discov Ther. 2016 Feb;10(1):30-3. doi: 10.5582/ddt.2016.01020. Drug Discov Ther. 2016. PMID: 26971552 Review. - Genomic differences between the food-grade Staphylococcus carnosus and pathogenic staphylococcal species.
Rosenstein R, Götz F. Rosenstein R, et al. Int J Med Microbiol. 2010 Feb;300(2-3):104-8. doi: 10.1016/j.ijmm.2009.08.014. Epub 2009 Oct 9. Int J Med Microbiol. 2010. PMID: 19818681 Review.
Cited by
- Display of human proinsulin on the Bacillus subtilis spore surface for oral administration.
Feng F, Hu P, Chen L, Tang Q, Lian C, Yao Q, Chen K. Feng F, et al. Curr Microbiol. 2013 Jul;67(1):1-8. doi: 10.1007/s00284-013-0325-6. Epub 2013 Feb 5. Curr Microbiol. 2013. PMID: 23380802 - When ribonucleases come into play in pathogens: a survey of gram-positive bacteria.
Jester BC, Romby P, Lioliou E. Jester BC, et al. Int J Microbiol. 2012;2012:592196. doi: 10.1155/2012/592196. Epub 2012 Mar 13. Int J Microbiol. 2012. PMID: 22550495 Free PMC article. - A Bombyx mori Infection Model for Screening Antibiotics against Staphylococcus epidermidis.
Montali A, Berini F, Saviane A, Cappellozza S, Marinelli F, Tettamanti G. Montali A, et al. Insects. 2022 Aug 19;13(8):748. doi: 10.3390/insects13080748. Insects. 2022. PMID: 36005373 Free PMC article. - RNAs: regulators of bacterial virulence.
Gripenland J, Netterling S, Loh E, Tiensuu T, Toledo-Arana A, Johansson J. Gripenland J, et al. Nat Rev Microbiol. 2010 Dec;8(12):857-66. doi: 10.1038/nrmicro2457. Nat Rev Microbiol. 2010. PMID: 21079634 Review. - Non-pathogenic Escherichia coli acquires virulence by mutating a growth-essential LPS transporter.
Kaito C, Yoshikai H, Wakamatsu A, Miyashita A, Matsumoto Y, Fujiyuki T, Kato M, Ogura Y, Hayashi T, Isogai T, Sekimizu K. Kaito C, et al. PLoS Pathog. 2020 Apr 23;16(4):e1008469. doi: 10.1371/journal.ppat.1008469. eCollection 2020 Apr. PLoS Pathog. 2020. PMID: 32324807 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical