Innate immunity and inflammation in ageing: a key for understanding age-related diseases - PubMed (original) (raw)

Federico Licastro et al. Immun Ageing. 2005.

Abstract

The process of maintaining life for the individual is a constant struggle to preserve his/her integrity. This can come at a price when immunity is involved, namely systemic inflammation. Inflammation is not per se a negative phenomenon: it is the response of the immune system to the invasion of viruses or bacteria and other pathogens. During evolution the human organism was set to live 40 or 50 years; today, however, the immune system must remain active for much a longer time. This very long activity leads to a chronic inflammation that slowly but inexorably damages one or several organs: this is a typical phenomenon linked to ageing and it is considered the major risk factor for age-related chronic diseases. Alzheimer's disease, atherosclerosis, diabetes and even sarcopenia and cancer, just to mention a few - have an important inflammatory component, though disease progression seems also dependent on the genetic background of individuals. Emerging evidence suggests that pro-inflammatory genotypes are related to unsuccessful ageing, and, reciprocally, controlling inflammatory status may allow a better chance of successful ageing. In other words, age-related diseases are "the price we pay" for a life-long active immune system: this system has also the potential to harm us later, as its fine tuning becomes compromised. Our immune system has evolved to control pathogens, so pro-inflammatory responses are likely to be evolutionarily programmed to resist fatal infections with pathogens aggressively. Thus, inflammatory genotypes are an important and necessary part of the normal host responses to pathogens in early life, but the overproduction of inflammatory molecules might also cause immune-related inflammatory diseases and eventually death later. Therefore, low responder genotypes involved in regulation of innate defence mechanisms, might better control inflammatory responses and age-related disease development, resulting in an increased chance of long life survival in a "permissive" environment with reduced pathogen load, medical care and increased quality of life.

PubMed Disclaimer

Figures

Figure 1

Figure 1

Schematic representation of inflammatory mechanisms involved in pathogenesis of atherosclerosis and plaque formation. Monocytes and macrophages are the protagonists of atherosclerotic processes.

Figure 2

Figure 2

Alzheimer's disease: amyloid deposition is one the main pathogenetic mechanism. Accumulation of Aβ peptide may be caused by 1) gene mutations (PS1, PS2 and APP human mutations in familial Alzheimer's disease) 2) genotype (and/or phenotype) favoring unbalanced inflammatory responses (pro-inflammatory genotype/anti-inflammatory genotype).

Similar articles

Cited by

References

    1. Medzhitov R, Janeway C., Jr Innate immunity. N Engl J Med. 2000;343:338–344. doi: 10.1056/NEJM200008033430506. - DOI - PubMed
    1. Janeway C, Jr, Medzhitov R. Viral interference with IL-1 and toll signaling. Annu Rev Immunol. 2002;20:197–216. doi: 10.1146/annurev.immunol.20.083001.084359. - DOI - PubMed
    1. Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol. 1997;8:275–280. - PubMed
    1. Muzio M, Natoli G, Saccani S, Levrero M, Mantovani A. The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosis factor receptor-associated factor 6 (TRAF6) J Exp Med. 1998;187:2097–2101. doi: 10.1084/jem.187.12.2097. - DOI - PMC - PubMed
    1. Guha M, Mackman N. LPS induction of gene expression in human monocytes. Cell Signal. 2001;13:85–94. doi: 10.1016/S0898-6568(00)00149-2. - DOI - PubMed

LinkOut - more resources