Riboswitches as versatile gene control elements - PubMed (original) (raw)
Review
Riboswitches as versatile gene control elements
Brian J Tucker et al. Curr Opin Struct Biol. 2005 Jun.
Abstract
Riboswitches are structured elements typically found in the 5' untranslated regions of mRNAs, where they regulate gene expression by binding to small metabolites. In all examples studied to date, these RNA control elements do not require the involvement of protein factors for metabolite binding. Riboswitches appear to be pervasive in eubacteria, suggesting that this form of regulation is an important mechanism by which metabolic genes are controlled. Recently discovered riboswitch classes have surprisingly complex mechanisms for regulating gene expression and new high-resolution structural models of these RNAs provide insight into the molecular details of metabolite recognition by natural RNA aptamers.
Similar articles
- [The adenine riboswitch: a new gene regulation mechanism].
Lemay JF, Lafontaine DA. Lemay JF, et al. Med Sci (Paris). 2006 Dec;22(12):1053-9. doi: 10.1051/medsci/200622121053. Med Sci (Paris). 2006. PMID: 17156726 Review. French. - An mRNA structure that controls gene expression by binding S-adenosylmethionine.
Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR. Winkler WC, et al. Nat Struct Biol. 2003 Sep;10(9):701-7. doi: 10.1038/nsb967. Epub 2003 Aug 10. Nat Struct Biol. 2003. PMID: 12910260 - Riboswitches: ancient and promising genetic regulators.
Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA. Blouin S, et al. Chembiochem. 2009 Feb 13;10(3):400-16. doi: 10.1002/cbic.200800593. Chembiochem. 2009. PMID: 19101979 Review. - The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch.
Wickiser JK, Winkler WC, Breaker RR, Crothers DM. Wickiser JK, et al. Mol Cell. 2005 Apr 1;18(1):49-60. doi: 10.1016/j.molcel.2005.02.032. Mol Cell. 2005. PMID: 15808508 - Structure of the S-adenosylmethionine riboswitch regulatory mRNA element.
Montange RK, Batey RT. Montange RK, et al. Nature. 2006 Jun 29;441(7097):1172-5. doi: 10.1038/nature04819. Nature. 2006. PMID: 16810258
Cited by
- TurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots.
Seetin MG, Mathews DH. Seetin MG, et al. Bioinformatics. 2012 Mar 15;28(6):792-8. doi: 10.1093/bioinformatics/bts044. Epub 2012 Jan 27. Bioinformatics. 2012. PMID: 22285566 Free PMC article. - Thermodynamics of RNA structures by Wang-Landau sampling.
Lou F, Clote P. Lou F, et al. Bioinformatics. 2010 Jun 15;26(12):i278-86. doi: 10.1093/bioinformatics/btq218. Bioinformatics. 2010. PMID: 20529917 Free PMC article. - Toward reprogramming bacteria with small molecules and RNA.
Gallivan JP. Gallivan JP. Curr Opin Chem Biol. 2007 Dec;11(6):612-9. doi: 10.1016/j.cbpa.2007.10.004. Epub 2007 Nov 19. Curr Opin Chem Biol. 2007. PMID: 17967431 Free PMC article. Review. - ProbKnot: fast prediction of RNA secondary structure including pseudoknots.
Bellaousov S, Mathews DH. Bellaousov S, et al. RNA. 2010 Oct;16(10):1870-80. doi: 10.1261/rna.2125310. Epub 2010 Aug 10. RNA. 2010. PMID: 20699301 Free PMC article. - Unraveling RNA dynamical behavior of TPP riboswitches: a comparison between Escherichia coli and Arabidopsis thaliana.
Antunes D, Jorge NAN, Garcia de Souza Costa M, Passetti F, Caffarena ER. Antunes D, et al. Sci Rep. 2019 Mar 12;9(1):4197. doi: 10.1038/s41598-019-40875-1. Sci Rep. 2019. PMID: 30862893 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources