Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum - PubMed (original) (raw)
Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum
Motomitsu Kitaoka et al. Appl Environ Microbiol. 2005 Jun.
Abstract
A lacto-N-biose phosphorylase (LNBP) was purified from the cell extract of Bifidobacterium bifidum. Its N-terminal and internal amino acid sequences were homologous with those of the hypothetical protein of Bifidobacterium longum NCC2705 encoded by the BL1641 gene. The homologous gene of the type strain B. longum JCM1217, lnpA, was expressed in Escherichia coli to confirm that it encoded LNBP. No significant identity was found with any proteins with known function, indicating that LNBP should be classified in a new family. The lnpA gene is located in a novel putative operon for galactose metabolism that does not contain a galactokinase gene. The operon seems to be involved in intestinal colonization by bifidobacteria mediated by metabolism of mucin sugars. In addition, it may also resolve the question of the nature of the bifidus factor in human milk as the lacto-N-biose structure found in milk oligosaccharides.
Figures
FIG. 1.
Alignment of the amino acid sequences of LNBPs. The origins of the enzymes are indicated in the left column. Conserved amino acid residues are highlighted.
FIG. 2.
Putative lacto-_N_-biose operon found in the genomic sequence of B. longum NCC2705. BL1641 was identified as LNBP in this study. BL1638-1640 genes are annotated as component proteins of the ABC-type sugar transporter. BL1642, BL1643, and BL1644 are annotated as mucin desulfatase, galactose-1-phosphate uridylyltransferase (EC 2.7.7.10), and UDP-glucose 4-epimerase (EC 5.1.3.2), respectively.
FIG. 3.
Proposed scheme of lacto-_N_-biose metabolism.
Similar articles
- Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum.
Nishimoto M, Kitaoka M. Nishimoto M, et al. Appl Environ Microbiol. 2007 Oct;73(20):6444-9. doi: 10.1128/AEM.01425-07. Epub 2007 Aug 24. Appl Environ Microbiol. 2007. PMID: 17720833 Free PMC article. - Identification of galacto-N-biose phosphorylase from Clostridium perfringens ATCC13124.
Nakajima M, Nihira T, Nishimoto M, Kitaoka M. Nakajima M, et al. Appl Microbiol Biotechnol. 2008 Mar;78(3):465-71. doi: 10.1007/s00253-007-1319-8. Epub 2008 Jan 9. Appl Microbiol Biotechnol. 2008. PMID: 18183385 - Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211).
Nishimoto M, Kitaoka M. Nishimoto M, et al. Biosci Biotechnol Biochem. 2007 Jun;71(6):1587-91. doi: 10.1271/bbb.70064. Biosci Biotechnol Biochem. 2007. PMID: 17587697 - Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides.
Kitaoka M. Kitaoka M. Adv Nutr. 2012 May 1;3(3):422S-9S. doi: 10.3945/an.111.001420. Adv Nutr. 2012. PMID: 22585921 Free PMC article. Review. - Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins.
Katayama T, Fujita K, Yamamoto K. Katayama T, et al. J Biosci Bioeng. 2005 May;99(5):457-65. doi: 10.1263/jbb.99.457. J Biosci Bioeng. 2005. PMID: 16233817 Review.
Cited by
- The predominance of type I oligosaccharides is a feature specific to human breast milk.
Urashima T, Asakuma S, Leo F, Fukuda K, Messer M, Oftedal OT. Urashima T, et al. Adv Nutr. 2012 May 1;3(3):473S-82S. doi: 10.3945/an.111.001412. Adv Nutr. 2012. PMID: 22585927 Free PMC article. - Two Novel α-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan.
Komeno M, Hayamizu H, Fujita K, Ashida H. Komeno M, et al. Appl Environ Microbiol. 2019 Mar 6;85(6):e02582-18. doi: 10.1128/AEM.02582-18. Print 2019 Mar 15. Appl Environ Microbiol. 2019. PMID: 30635377 Free PMC article. - Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.
Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, Urashima T, Tomabechi Y, Katayama-Ikegami A, Kurihara S, Yamamoto K, Harata G, He F, Hirose J, Kitaoka M, Okuda S, Katayama T. Gotoh A, et al. Sci Rep. 2018 Sep 18;8(1):13958. doi: 10.1038/s41598-018-32080-3. Sci Rep. 2018. PMID: 30228375 Free PMC article. - Identification of lacto-N-Biose I phosphorylase from Vibrio vulnificus CMCP6.
Nakajima M, Kitaoka M. Nakajima M, et al. Appl Environ Microbiol. 2008 Oct;74(20):6333-7. doi: 10.1128/AEM.02846-07. Epub 2008 Aug 22. Appl Environ Microbiol. 2008. PMID: 18723650 Free PMC article. - Variation in the Conservation of Species-Specific Gene Sets for HMO Degradation and Its Effects on HMO Utilization in Bifidobacteria.
Hermes GDA, Rasmussen C, Wellejus A. Hermes GDA, et al. Nutrients. 2024 Jun 15;16(12):1893. doi: 10.3390/nu16121893. Nutrients. 2024. PMID: 38931248 Free PMC article.
References
- Benno, Y., and T. Mitsuoka. 1986. The development of gastrointestinal micro-flora in humans and animals. Bifidobacteria Microflora 5:13-25.
- Benno, Y., K. Sawada, and T. Mitsuoka. 1984. The intestinal microflora of infants: composition of fecal flora in breast-fed and bottle-fed infants. Microbiol. Immunol. 28:975-986. - PubMed
- Bezkorovainy, A. 1989. Ecology of bifidobacteria, p. 29-72. In A. Bezkorovainy and R. Miller-Catchpole (ed.), Biochemistry and physiology of bifidobacteria. CRC Press, Cleveland, Ohio.
- Bourne, Y., and B. Henrissat. 2001. Glycoside hydrolases and glycosyltransferases: families and functional modules. Curr. Opin. Struct. Biol. 11:593-600. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources