Non-stoichiometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver - PubMed (original) (raw)
Comparative Study
doi: 10.1074/mcp.M500043-MCP200. Epub 2005 Jun 2.
Affiliations
- PMID: 15933375
- DOI: 10.1074/mcp.M500043-MCP200
Free article
Comparative Study
Non-stoichiometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver
Martine Girard et al. Mol Cell Proteomics. 2005 Aug.
Free article
Abstract
We used tandem mass spectrometry with peptide counts to identify and to determine the relative levels of expression of abundant protein components of highly enriched clathrin-coated vesicles (CCVs) from rat liver. The stoichiometry of stable protein complexes including clathrin heavy chain and clathrin light chain dimers and adaptor protein (AP) heterotetramers was assessed. We detected a deficit of clathrin light chain compared with clathrin heavy chain in non-brain tissues, suggesting a level of regulation of clathrin cage formation specific to brain. The high ratio of AP-1 to AP-2 in liver CCVs is reversed compared with brain where there is more AP-2 than AP-1. Despite this, general endocytic cargo proteins were readily detected in liver but not in brain CCVs, consistent with the previous demonstration that a major function for brain CCVs is recycling synaptic vesicles. Finally we identified 21 CCV-associated proteins in liver not yet characterized in mammals. Our results further validate the peptide accounting approach, reveal new information on the properties of CCVs, and allow for the use of quantitative proteomics to compare abundant components of organelles under different experimental and pathological conditions.
Similar articles
- Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components.
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Dahhan DA, et al. Plant Cell. 2022 May 24;34(6):2150-2173. doi: 10.1093/plcell/koac071. Plant Cell. 2022. PMID: 35218346 Free PMC article. - Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling.
Blondeau F, Ritter B, Allaire PD, Wasiak S, Girard M, Hussain NK, Angers A, Legendre-Guillemin V, Roy L, Boismenu D, Kearney RE, Bell AW, Bergeron JJ, McPherson PS. Blondeau F, et al. Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3833-8. doi: 10.1073/pnas.0308186101. Epub 2004 Mar 8. Proc Natl Acad Sci U S A. 2004. PMID: 15007177 Free PMC article. - Clathrin-coated vesicles form a unique net-like structure in liver sinusoidal endothelial cells by assembling along undisrupted microtubules.
Falkowska-Hansen B, Falkowski M, Metharom P, Krunic D, Goerdt S. Falkowska-Hansen B, et al. Exp Cell Res. 2007 May 15;313(9):1745-57. doi: 10.1016/j.yexcr.2007.02.026. Epub 2007 Mar 12. Exp Cell Res. 2007. PMID: 17433812 - Proteomic analysis of clathrin-coated vesicles.
McPherson PS. McPherson PS. Proteomics. 2010 Nov;10(22):4025-39. doi: 10.1002/pmic.201000253. Proteomics. 2010. PMID: 21080493 Review. - Molecular mechanisms in clathrin-mediated membrane budding revealed through subcellular proteomics.
Ritter B, Blondeau F, Denisov AY, Gehring K, McPherson PS. Ritter B, et al. Biochem Soc Trans. 2004 Nov;32(Pt 5):769-73. doi: 10.1042/BST0320769. Biochem Soc Trans. 2004. PMID: 15494011 Review.
Cited by
- Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study.
Heymann JB, Winkler DC, Yim YI, Eisenberg E, Greene LE, Steven AC. Heymann JB, et al. J Struct Biol. 2013 Oct;184(1):43-51. doi: 10.1016/j.jsb.2013.05.006. Epub 2013 May 18. J Struct Biol. 2013. PMID: 23688956 Free PMC article. - Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components.
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Dahhan DA, et al. Plant Cell. 2022 May 24;34(6):2150-2173. doi: 10.1093/plcell/koac071. Plant Cell. 2022. PMID: 35218346 Free PMC article. - Inner ear proteomics of mouse models for deafness, a discovery strategy.
Zheng QY, Rozanas CR, Thalmann I, Chance MR, Alagramam KN. Zheng QY, et al. Brain Res. 2006 May 26;1091(1):113-21. doi: 10.1016/j.brainres.2006.02.069. Epub 2006 Apr 5. Brain Res. 2006. PMID: 16600193 Free PMC article. Review. - Proteomic analysis of the secretome of Leishmania donovani.
Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE. Silverman JM, et al. Genome Biol. 2008;9(2):R35. doi: 10.1186/gb-2008-9-2-r35. Epub 2008 Feb 18. Genome Biol. 2008. PMID: 18282296 Free PMC article. - Peptide motifs: building the clathrin machinery.
McPherson PS, Ritter B. McPherson PS, et al. Mol Neurobiol. 2005 Aug;32(1):73-87. doi: 10.1385/MN:32:1:073. Mol Neurobiol. 2005. PMID: 16077185 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials