Normal mode refinement: crystallographic refinement of protein dynamic structure. I. Theory and test by simulated diffraction data - PubMed (original) (raw)
Normal mode refinement: crystallographic refinement of protein dynamic structure. I. Theory and test by simulated diffraction data
A Kidera et al. J Mol Biol. 1992.
Abstract
A dynamic structure refinement method for X-ray crystallography, referred to as the normal mode refinement, is proposed. The Debye-Waller factor is expanded in terms of the low-frequency normal modes whose amplitudes and eigenvectors are experimentally optimized in the process of the crystallographic refinement. In this model, the atomic fluctuations are treated as anisotropic and concerted. The normal modes of the external motion (TLS model) are also introduced to cover the factors other than the internal fluctuations, such as the lattice disorder and diffusion. A program for the normal mode refinement (NM-REF) has been developed. The method has first been tested against simulated diffraction data for human lysozyme calculated by a Monte Carlo simulation. Applications of the method have demonstrated that the normal mode refinement has: (1) improved the fitting to the diffraction data, even with fewer adjustable parameters; (2) distinguished internal fluctuations from external ones; (3) determined anisotropic thermal factors; and (4) identified concerted fluctuations in the protein molecule.
Similar articles
- Normal mode refinement: crystallographic refinement of protein dynamic structure applied to human lysozyme.
Kidera A, Inaka K, Matsushima M, Go N. Kidera A, et al. Biopolymers. 1992 Apr;32(4):315-9. doi: 10.1002/bip.360320404. Biopolymers. 1992. PMID: 1623125 - Normal mode refinement: crystallographic refinement of protein dynamic structure. II. Application to human lysozyme.
Kidera A, Inaka K, Matsushima M, Go N. Kidera A, et al. J Mol Biol. 1992 May 20;225(2):477-86. doi: 10.1016/0022-2836(92)90933-b. J Mol Biol. 1992. PMID: 1593631 - Refinement of protein dynamic structure: normal mode refinement.
Kidera A, Go N. Kidera A, et al. Proc Natl Acad Sci U S A. 1990 May;87(10):3718-22. doi: 10.1073/pnas.87.10.3718. Proc Natl Acad Sci U S A. 1990. PMID: 2339115 Free PMC article. - Refinement of Atomic Structures Against cryo-EM Maps.
Murshudov GN. Murshudov GN. Methods Enzymol. 2016;579:277-305. doi: 10.1016/bs.mie.2016.05.033. Epub 2016 Jun 24. Methods Enzymol. 2016. PMID: 27572731 Review. - Fluctuations in protein structure from X-ray diffraction.
Petsko GA, Ringe D. Petsko GA, et al. Annu Rev Biophys Bioeng. 1984;13:331-71. doi: 10.1146/annurev.bb.13.060184.001555. Annu Rev Biophys Bioeng. 1984. PMID: 6331286 Review. No abstract available.
Cited by
- Harmonic and anharmonic aspects in the dynamics of BPTI: a normal mode analysis and principal component analysis.
Hayward S, Kitao A, Go N. Hayward S, et al. Protein Sci. 1994 Jun;3(6):936-43. doi: 10.1002/pro.5560030608. Protein Sci. 1994. PMID: 7520795 Free PMC article. - Use of multiple picosecond high-mass molecular dynamics simulations to predict crystallographic B-factors of folded globular proteins.
Pang YP. Pang YP. Heliyon. 2016 Sep 20;2(9):e00161. doi: 10.1016/j.heliyon.2016.e00161. eCollection 2016 Sep. Heliyon. 2016. PMID: 27699282 Free PMC article. - Structural improvement of unliganded simian immunodeficiency virus gp120 core by normal-mode-based X-ray crystallographic refinement.
Chen X, Lu M, Poon BK, Wang Q, Ma J. Chen X, et al. Acta Crystallogr D Biol Crystallogr. 2009 Apr;65(Pt 4):339-47. doi: 10.1107/S0907444909003539. Epub 2009 Mar 19. Acta Crystallogr D Biol Crystallogr. 2009. PMID: 19307715 Free PMC article. - phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.
Terwilliger TC, Dimaio F, Read RJ, Baker D, Bunkóczi G, Adams PD, Grosse-Kunstleve RW, Afonine PV, Echols N. Terwilliger TC, et al. J Struct Funct Genomics. 2012 Jun;13(2):81-90. doi: 10.1007/s10969-012-9129-3. Epub 2012 Mar 15. J Struct Funct Genomics. 2012. PMID: 22418934 Free PMC article. - Normal-mode refinement of anisotropic thermal parameters for potassium channel KcsA at 3.2 A crystallographic resolution.
Chen X, Poon BK, Dousis A, Wang Q, Ma J. Chen X, et al. Structure. 2007 Aug;15(8):955-62. doi: 10.1016/j.str.2007.06.012. Structure. 2007. PMID: 17698000 Free PMC article.