In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons - PubMed (original) (raw)
. 2005 Jul;114(2):103-17.
doi: 10.1007/s00412-005-0342-8. Epub 2005 Jun 17.
Affiliations
- PMID: 15965704
- DOI: 10.1007/s00412-005-0342-8
In-depth sequence analysis of the tomato chromosome 12 centromeric region: identification of a large CAA block and characterization of pericentromere retrotranposons
Tae-Jin Yang et al. Chromosoma. 2005 Jul.
Abstract
We sequenced a continuous 326-kb DNA stretch of a microscopically defined centromeric region of tomato chromosome 12. A total of 84% of the sequence (270 kb) was composed of a nested complex of repeat sequences including 27 retrotransposons, two transposable elements, three MITEs, two terminal repeat retrotransposons in miniature (TRIMs), ten unclassified repeats and three chloroplast DNA insertions. The retrotransposons were grouped into three families of Ty3-Gypsy type long terminal repeat (LTR) retrotransposons (PCRT1-PCRT3) and one LINE-like retrotransposon (PCRT4). High-resolution fluorescence in situ hybridization analyses on pachytene complements revealed that PCRT1a occurs on the pericentromere heterochromatin blocks. PCRT1 was the prevalent retrotransposon family occupying more than 60% of the 326-kb sequence with 19 members grouped into eight subfamilies (PCRT1a-PCRT1h) based on LTR sequence. The PCRT1a subfamily is a rapidly amplified element occupying tens of megabases. The other PCRT1 subfamilies (PCRT1b-PCRT1h) were highly degenerated and interrupted by insertions of other elements. The PCRT1 family shows identity with a previously identified tomato-specific repeat TGR2 and a CENP-B like sequence. A second previously described genomic repeat, TGR3, was identified as a part of the LTR sequence of an Athila-like PCRT2 element of which four copies were found in the 326-kb stretch. A large block of trinucleotide microsatellite (CAA)n occupies the centromere and large portions of the flanking pericentromere heterochromatin blocks of chromosome 12 and most of the other chromosomes. Five putative genes in the remaining 14% of the centromere region were identified, of which one is similar to a transcription regulator (ToCPL1) and a candidate jointless-2 gene.
Similar articles
- Characterization of the centromere and peri-centromere retrotransposons in Brassica rapa and their distribution in related Brassica species.
Lim KB, Yang TJ, Hwang YJ, Kim JS, Park JY, Kwon SJ, Kim J, Choi BS, Lim MH, Jin M, Kim HI, de Jong H, Bancroft I, Lim Y, Park BS. Lim KB, et al. Plant J. 2007 Jan;49(2):173-83. doi: 10.1111/j.1365-313X.2006.02952.x. Epub 2006 Dec 6. Plant J. 2007. PMID: 17156411 - Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, Park M, Choi D, Lim YP, Kwon SJ, Park BS, Kim HH, Yang TJ. Choi HI, et al. Plant J. 2014 Mar;77(6):906-16. doi: 10.1111/tpj.12441. Epub 2014 Feb 24. Plant J. 2014. PMID: 24456463 - Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome.
Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD. Wang Y, et al. Genetics. 2006 Apr;172(4):2529-40. doi: 10.1534/genetics.106.055772. Epub 2006 Feb 19. Genetics. 2006. PMID: 16489216 Free PMC article. - Complex structure of knobs and centromeric regions in maize chromosomes.
Ananiev EV, Phillips RL, Rines HW. Ananiev EV, et al. Tsitol Genet. 2000 Mar-Apr;34(2):11-5. Tsitol Genet. 2000. PMID: 10857197 Review. - Role of fluorescence in situ hybridization in sequencing the tomato genome.
Stack SM, Royer SM, Shearer LA, Chang SB, Giovannoni JJ, Westfall DH, White RA, Anderson LK. Stack SM, et al. Cytogenet Genome Res. 2009;124(3-4):339-50. doi: 10.1159/000218137. Epub 2009 Jun 25. Cytogenet Genome Res. 2009. PMID: 19556785 Review.
Cited by
- Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress.
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou LH, Ahmad Z, Vinod KK, Yang P, Zhou M. Papolu PK, et al. Front Plant Sci. 2022 Dec 9;13:1064847. doi: 10.3389/fpls.2022.1064847. eCollection 2022. Front Plant Sci. 2022. PMID: 36570931 Free PMC article. Review. - Endogenous pararetroviral sequences in tomato (Solanum lycopersicum) and related species.
Staginnus C, Gregor W, Mette MF, Teo CH, Borroto-Fernández EG, Machado ML, Matzke M, Schwarzacher T. Staginnus C, et al. BMC Plant Biol. 2007 May 21;7:24. doi: 10.1186/1471-2229-7-24. BMC Plant Biol. 2007. PMID: 17517142 Free PMC article. - Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa.
Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS. Yang TJ, et al. Plant Cell. 2006 Jun;18(6):1339-47. doi: 10.1105/tpc.105.040535. Epub 2006 Apr 21. Plant Cell. 2006. PMID: 16632644 Free PMC article. - The AP2/ERF transcription factor SlERF52 functions in flower pedicel abscission in tomato.
Nakano T, Fujisawa M, Shima Y, Ito Y. Nakano T, et al. J Exp Bot. 2014 Jul;65(12):3111-9. doi: 10.1093/jxb/eru154. Epub 2014 Apr 17. J Exp Bot. 2014. PMID: 24744429 Free PMC article. - Cytogenetic Diversity of Simple Sequences Repeats in Morphotypes of Brassica rapa ssp. chinensis.
Zheng JS, Sun CZ, Zhang SN, Hou XL, Bonnema G. Zheng JS, et al. Front Plant Sci. 2016 Jul 26;7:1049. doi: 10.3389/fpls.2016.01049. eCollection 2016. Front Plant Sci. 2016. PMID: 27507974 Free PMC article.
References
- Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13778-83 - PubMed
- Plant Cell. 2002 Jul;14(7):1441-56 - PubMed
- Genome Res. 1998 Mar;8(3):195-202 - PubMed
- Genetics. 2003 Jun;164(2):665-72 - PubMed
- Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10893-8 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources