Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases - PubMed (original) (raw)
Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases
D H Gelfand et al. J Bacteriol. 1977 Apr.
Abstract
Two new mutations are described which, together, eliminate essentially all the aminotransferase activity required for de novo biosynthesis of tyrosine, phenylalanine, and aspartic acid in a K-12 strain of Escherichia coli. One mutation, designated tyrB, lies at about 80 min on the E. coli map and inactivates the "tyrosine-repressible" tyrosine/phenylalanine aminotransferase. The second mutation, aspC, maps at about 20 min and inactivates a nonrespressible aspartate aminotransferase that also has activity on the aromatic amino acids. In ilvE- strains, which lack the branched-chain amino acid aminotransferase, the presence of either the tyrosine-repressible aminotransferase or the aspartate aminotransferase is sufficient for growth in the absence of exogenous tyrosine, phenylalanine, or aspartate; the tyrosine-repressible enzyme is also active in leucine biosynthesis. The ilvE gene product alone can reverse a phenylalanine requirement. Biochemical studies on extracts of strains carrying combinations of these aminotransferase mutations confirm the existence of two distinct enzymes with overlapping specificities for the alpha-keto acid analogues of tyrosine, phenylalanine, and aspartate. These enzymes can be distinguished by electrophoretic mobilities, by kinetic parameters using various substrates, and by a difference in tyrosine repressibility. In extracts of an ilvE- tyrB- aspC- triple mutant, no aminotransferase activity for the alpha-keto acids of tyrosine, phenylalanine, or aspartate could be detected.
Similar articles
- Nonidentity of the aspartate and the aromatic aminotransferase components of transaminase A in Escherichia coli.
Collier RH, Kohlhaw G. Collier RH, et al. J Bacteriol. 1972 Oct;112(1):365-71. doi: 10.1128/jb.112.1.365-371.1972. J Bacteriol. 1972. PMID: 4404056 Free PMC article. - Mapping of the aspartate and aromatic amino acid aminotransferase genes tyrB and aspC.
Gelfand DH, Rudo N. Gelfand DH, et al. J Bacteriol. 1977 Apr;130(1):441-4. doi: 10.1128/jb.130.1.441-444.1977. J Bacteriol. 1977. PMID: 323238 Free PMC article. - Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli.
Mavrides C, Orr W. Mavrides C, et al. J Biol Chem. 1975 Jun 10;250(11):4128-33. J Biol Chem. 1975. PMID: 236311 - Repression of aromatic amino acid biosynthesis in Escherichia coli K-12.
Brown KD, Somerville RL. Brown KD, et al. J Bacteriol. 1971 Oct;108(1):386-99. doi: 10.1128/jb.108.1.386-399.1971. J Bacteriol. 1971. PMID: 4399341 Free PMC article. - The Neurometabolic Function of the Dopamine-Aminotransferase System.
Apryatin SA. Apryatin SA. Metabolites. 2025 Jan 6;15(1):21. doi: 10.3390/metabo15010021. Metabolites. 2025. PMID: 39852364 Free PMC article. Review.
Cited by
- Model-driven discovery of underground metabolic functions in Escherichia coli.
Guzmán GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, Palsson BO, Feist AM. Guzmán GI, et al. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):929-34. doi: 10.1073/pnas.1414218112. Epub 2015 Jan 6. Proc Natl Acad Sci U S A. 2015. PMID: 25564669 Free PMC article. - Cloning and characterization of the Escherichia coli K-12 alanine-valine transaminase (avtA) gene.
Wang MD, Liu L, Wang BM, Berg CM. Wang MD, et al. J Bacteriol. 1987 Sep;169(9):4228-34. doi: 10.1128/jb.169.9.4228-4234.1987. J Bacteriol. 1987. PMID: 3040683 Free PMC article. - Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH.
Zhang C, Zhang J, Kang Z, Du G, Yu X, Wang T, Chen J. Zhang C, et al. J Ind Microbiol Biotechnol. 2013 Jun;40(6):643-51. doi: 10.1007/s10295-013-1262-x. Epub 2013 Mar 23. J Ind Microbiol Biotechnol. 2013. PMID: 23526182 - Aspartate aminotransferase activity is required for aspartate catabolism and symbiotic nitrogen fixation in Rhizobium meliloti.
Rastogi VK, Watson RJ. Rastogi VK, et al. J Bacteriol. 1991 May;173(9):2879-87. doi: 10.1128/jb.173.9.2879-2887.1991. J Bacteriol. 1991. PMID: 2019560 Free PMC article. - Integration of the pSLT Plasmid into the Salmonella Chromosome Results in a Temperature-Sensitive Growth Defect Due to Aberrant DNA Replication.
Wozniak CE, Hendriksen JJ, Olivera BM, Roth JR, Hughes KT. Wozniak CE, et al. J Bacteriol. 2020 Sep 23;202(20):e00380-20. doi: 10.1128/JB.00380-20. Print 2020 Sep 23. J Bacteriol. 2020. PMID: 32747428 Free PMC article.
References
- J Biol Chem. 1953 Feb;200(2):591-604 - PubMed
- J Biol Chem. 1953 Nov;205(1):475-82 - PubMed
- J Biol Chem. 1956 Jan;218(1):97-106 - PubMed
- Virology. 1959 Nov;9:314-31 - PubMed
- Biochim Biophys Acta. 1963 Jun 11;73:232-40 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials